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_ PREFACE

This Handbook was prepared by personnel of the Mechanical Engineering

Department and Medical Research Institute of Florida Institute of Technology,

under Contract NAS 10-a399, administered by the National Aeronautics and

Space Administration, John F. Kennedy Space Center, Florida. The NASA

Technical Representative for the contract is Mr. Harold Franks, DD-MDD-41.

Study Manager is Dr. Thomas E. Bowman, Professor of Mechanical Entineering

at Florida Institute of Technology.

The present version of the Handbook was prepared under Phase SLx of

the overall study, and is based on work performed during Phases One, Two,

Three and Five. The organization of the Handbook is such that additionalma-

terialbased on other work performed during Phase Six can be readily added at

a later date, and section headings for this material are included in the Hand-

book. More comprehensive treatments of the work on which the Handbook is

based can be found in the Final Reports for the earlier phases of the study.
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The disposal of chemical and industrial waste,s of all typos has become

one of the major areas of technological endeavor duzing the 1960's and 70's,

and will no doubt continue to demand the best efforts of many thousands of

engineers and scientists for the foreseeable future. _o much has been said and

written on this subject in recent years that there is su_ely n_ point repeating

here the many reasons why the disposal of all substances, _om the most per-

nicious to the seemingly innocuous, must be a matter for study and concern.

A number of disposal situations occur in connection with aerospace launch

operations, including possible atmospheric releases of vapor as well as liquid

waste disposal, increased attention to flxxilng the best mean_ of treating these

releases has been indicated both because of the national and worldwide concern

with all forms of chemical releases, and the increased frequency of launch

activities anticipated with the ardent of the Space Shuttle. While such activities

have never been a very significant source of air or water pollution, the fact

that they represent our society's finest example of technological accomplish-

ment Implies that they sh)uld also be setting an equally high example with re-

gard to the effective treatment of the potentially hazardous wastes.

Since August, 19#3, Florida Institute of Technology has studied many

aspects of these waste disposal situations resulting from launch operations,

under contract to NASA's John F. Kennedy Space Center (Contract NAS 10-8399).

The results have been covered in a series of Final Reports treating the various

phases of the. study, The purpose of this Handbook is to bring together in one

place those results felt to be of general interest outside the immediate KSC

communlty, and pertaining specifically to the disposal of hyperbolic propellents:

the hydrazine-type fuels and nltrogen tetroxide, red fuming nitric acid, and

hydrogen peroxide oxidizers.

Releases of these propellants can occur in a number of situations, Vapor

releases call result from purges both prior to propellant tank loading and fol-

lowing the end of a mission, venting of displaced ullage gas during propellant

tank loading, and venting of storage tanks and loaded vehicle tanks to maintain

presstu_e withii2 limits. Liquid waste can result froill drai._ing and cleaning

opetations_ emptying of liquid vapor separatorsj or contamination of supplies.

Aqueous solutions coi_talning hypergollc propel|aftra can be g_iierated at vapor

scrubbers or during various cleaning operations. Other situnttons caii also
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exist, including unplanned events such ._s spills. Our studies were concerned

with minimt_tng the environmental impac_ of all of_these operations, planned or

unplanned. We were concerned with all me'hods.of_treatment currently in use

or used in the past, with Lre_tment methods Ln use in other seglnents of industry

that might be applicable to aero3pace launch operations, with advances in the

state of the art (new treatment metl_ods), with evaluating the impact of untreated

releases, and with evaluating the economics of various treatment methods and

of untreated releUe. Our appro_,,ches included surveys of the literature, writ-

ten and verbal communications wt.th appropriate l_dividuals in all segments of

the aerospace industry and appropriate segments of the chemical and pollution

control industries, theoretlL_.al analyses, l_ooratory investigationS, and full-

scale prototype testing.

This Handbook presents all of our results regarding the effectiveness of

the various treatment methods. It is not our ._rtmary purpose here to compare

different treatment methods, as comparisons depend to a large degree on the

specific application. Rather, we attempt to present our results and evaluations

in sufficient detail that others can compare the treatment methods in terms of

their own needs. (Our own comparisons in terms of KSC applications have been

presented in earlier reports. ) Our evaluations on the basis of economics -

bo" first cost and operating cos_ - are generally not included, because of the

variation of these factors with time, location, specific applicationt etc. Other

considerations that were prtmariIy concerned with KSC appl:eatio,_s, such as

flow rate calculations_ sizing calculations_ specific design criteria, etc,, have

also been omitted aS not havl_ su_ficient general interest, Details of how we

arrived at some of otut information re_arding current and past d_sposal practices -

who we contacted, what questions _'e asked, etc. - have also been omitted for -

the same reason,

The propellants of interest are treated separately tn the chapters that

follow except for the hydrazine-type fuels, which are all treated in Chapter 2.

To some extent, later chapters refer back to earlier chapters where possible

to avoid repetition, arid hence are not entirely self-.contained. Maximum em-

phasis is on the Space Shuttle prop_lla_ltS_ MMH afld N204_ since these were

investigated niost thoroughly by us,
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It is intecesting to observe that aU of these propellants are nitrogen-based

except for hydrogen peroxide, and heuce can potentially be reduced to valuable

plant nutrients. None of them contain any elements other than carbon, nitrogen,

hydrogen, and oxygen except for inhibited fuming nitric acid, which contains a

small amount of fluorine, and hence with this exception they can all in theo_.__y be_._

reduced to these four harmless elemental substances.

Our overall evaluation of the current state of the art - disposal alternatives

that exist at the time this Handbook is being written, including recent develop-

ments and methods still in the prototype stage - is that virtually any hypergolic

propellant disposal problem can be solved in a manner that is economically

viable and environmentally satisfactory. In most cases, the env_.ronmental

aspects of launch-related ground support activities can easily be _ade to set a

high example for other segmetlts of the economy to work toward. The notorious

red nitrogen dioxlde plumes of years past, for example, can readlly be scrubbed

to levels that compare very favorably with the latest single-automobile emis-

sions standards. A few problems do still exist, and are identified In the chapters

that follow, as are potential further improvements that may be on the ho_'_on.

We fully expect that in the ye_u's to come, hypergolic propellant handl_ng

disposal activities at Kennedy Space Center and other testing and launch f_ci1_tles

will be among the least harmful, environmentall_, of all man's activities.
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A _HYDRO US H YDRA Z lINE
MONOMETHYL HYDRA ZiNE

UNSYMMETRICAL DIMETHYLHYDRAZINE
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2.1 MATERIAL DESCRIPTIONS 1

In this chapter we are concerned with the three hydrazines that are used

as aerospace propellants - anhydrous hydrazine (N2H4), monomethyl hydrazine

(MMH) (CH3NHNH 2) , and unsymmetrical dimethylhydrazine (UDMH) ((C H3) 2NNH2) -

and with Aerozine 50, a 50/50 UDMH/N2H 4 blend.

All of these hydrazines are clear, colorless liquids with characteristic

organic amine (ammonia, 'Tishy'_ odors. _All are hygroscopic, mildly alkaline,

and are very strong reducing agents. They all have positive heats of formation

at 77°F, and hence are subject to decomposition with attendant energy release.

N2H 4 and MMH mix with water in all proportions, and with low molecular

weight alcohols. N2H 4 is insoluble in hydrocarbons, while I_IMI-I is soluble.

UDMH is completely miscible with water, hydrazine, diethylene-triamine,

ethanol, and most petroleum fuels. It is unique in that it is completely mis-

cible with both polar and nonpo_ar solvents.

The chief reason for mixing UDMH and N2H 4 to form Aeroztne 50 is to

overcome the instability and high freezing point of N2H 4. The resultant fuel

will not ignite spontaneously in air below the critical point (482°F). The vapors

are, however, highly flammable In air over a wide range of concentr_tions, arid

are readily ignited by low energy sparks. The mixture is highly toxic, a_ are

the individual constituents (see below).

The follvwing excerpts from manufacturers' data bulletins provide ad-

ditional information on the behavior of the three primary fuels.

1. Source material for this section was taken from the following publications:

'_azards of Chemical Rockets and Propellants Handbook, Volume IH: Liquid

Propellant Handling, Storage and Transportation." Prepared by the Liquid
Propellant Handling and Storage Cormnittee, assisted by the Committee on En-
virenmental Health and Toxicology, JANNAF Propulsion Committee, Hazards

Working Group. AD 870259, May 1972.

*'Liquid Propellants Safety Handbook." Prepared by the Safety Office, John F.
Kennedy Space Center, NASA. Report No. GP 359, August 1, 1968.

'*Anhydrous Hydrazine Handling and Storc_ge." Olin Chemicals, 745 Fifth Ave.,
New York, N.Y. 10022.

"Monornethyi Hy0razine Handling "rod Storage. " Olin Corp., Chemicals Div-
ision, i20 Long Ridge Road, Stanford, Conn. 06904.

"DimaZine: Unsymmetrical Dlmethylhydrazine." FMC Corp., Inorganic Chem-
ice, Is Division., 633 Third Avenue, New York, N.Y. 10017.



Anhydrous hydrazlne

Decomposition of hydrazlne is caused by elevated temperatures and the

presence of catalytic surfaces or ion impurities.

At increased temperatures, hydrazlne will slowiy decompose to yield

nitrogen and ammonia. Studies at temperatures up to 500°F have shown that most

of the decomposition takes place in the vapor phase_ and tlmt the rate of deeom-

positlov is a direct function of temperature. No rapid decomposition has been

observed, even at 500°F_ in the absence of catalytic agents.

Certain metallic ions and metallic oxide stu'facesexhibit a marked catalytic

effectupon the decomposition of hydrazine. Laboratory studies have shown that

chromic, ferric, and cupric ions catalyze decomposition of hydrazine at reflux

conditions under a nitrogen blanket, At ambient conditions, there is no noticeable

effectfrom dissolved ions.

A surface area catalyticeffectoccurs when molybdenum, iron, Raney

nickel, rust, copper oxide or cobalt in finelydivided form come into contact

with hydrazine. A tom of hydrazine on iron rust will burst into flame ifvent-

flationis inadequate to keep itcool,

Anhydrous hydrazine is completely insensitive to shock, friction,or elec-

tricaldischarge, A No. 10 Army detonate:.;_vitha booster charge of 20 grams

of tetrylfailsto affecthydrazine, even at 221°F. 2 In cases where hydraz_ne

vapor has been exploded over the liquid, the liquidhas remained _maffected.

There is no danger, other than spiashing_ from dropping heavy equipment upon

spilled hydrazine.

MiXtures of hydrazine vapor in air are flammable between the limits of

4.7.% and 100% hydrazine by volume at normal teT._peratures. Combustion of

cold liquidhydrazine is difficultto initiate,however, Ignitionoccurs oal_

when the temperature has been raised above rougldy 126°F, the fire and flash

points for hydrazine. When burning freely in air, hydrazine behaves much

like gasoline. However, at elevated temperatures itburns fiercely,

i

2. Scott, F.E., Burns, J.J., and Lewis, B,: "Explosive Properties of
Hydrazine," Report of Investigations 4460, U.S. Department of the Interior,
Bureau of Mines, Pittsburgh, Pa. (May 1949),
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Water solutions of hydrazine at anyconcentration below 40% cannot be

ignited. 3 A 50% solution will burn only near its boiling point; with increasing

concentration the burnj.ng temperature decreases to about 126°F for the anhydrous

product.

Hydrazine vapors are irritating to the eyes, nose, and throat. Inhalation

causes dizziness, nausea, and hoarseness. These effects are not lmme<itately
4

noticeable, but appear gradually over a period of several hours' exposure.

Exposure of the eyes to hydrazine vapors causes itching, swelling, and blistering

of the eyelids accompanied by acute pain. Severe exposure of the eyes to the

vapor will produce burns similar to those which can be caused by a welding arc.

The result may cause temporary blindness, lasting about a day, but will not

result in permanent damage.

Contact of hydrazine with any body tissue will produce a caustic-like

burn if not w_shed off immediately. Ingestion or absorption through the skin

will cause nausea, dizziness, headache, and may prove fatal.

Monomethyl Hydrazine

_I_-I is stable up t,_ its atmospheric boiling poL,_t (189°F), only when kept

out of contact with oxygen. When MMH was refluxed for seven to ten hours under
5

one atmosphere of nitrogen, there was no appreciable decomposition. MMH is

more stable than hydrazine under conditions of mild heating. Even at bulk temp-
6

eratures of 300°F there is no evidence of explosive decomposition.

Spontaneous ignition, of MiVH-I can occur in either of two ways - by direct

oxidation or catalytic decomposition.

3, "A Study of Extinguishment and Control of Fires Involving Hydrazine-
Type Fuels with Air and Nitrogen Tetroxide," Atlantic Research Corp,, First
Quarterly Progress Report, 1960.

4. Liberto, R.R. : ,'Research and Development on the Basic Design of
Storable High-Energy Propellant Systems and Components, " Bell Aerosystems
Co., Buffalo, N.Y., Final Report AFFTC TR-60-61, Contract AF 33 (616)-

6689 (,%lay 1961).

5. "S_mi-anual Technical Program Report AF04 (647)-171, Volume III."

Rock,_tdyne Report R-833-3P (20 July 1959).

6. Ibid.
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Exposure of MMH to air and especially on large surface areas (such as

rags, cotton waste, sawdust, and excelsior)rnxy result in spontaneous ignition

due to the heat evolved by oxidation with atmospheric oxygen.

Catalytic decomposition can be caused by contact with rust, molybdenum,

copper and its alloys, and spontaneous fire will result. When a film of MMH

comes in contact with certain metallic oxides, particularly those of iron, cop-

per, lead, and manganese, it ,uay cause the MMH to decompose due to a chem-

ical heat of decomposition. This heat may be sufficient to raise the temperature

high enough to cause spontaneous ignition.

Mixtures of MMH vapors in air at normal temperatures are flammable

bwtween 2.5% and 98%. Mixtures within the flammable limits can be exploded

by an electric spark or open flame.

Liquid MMH is insensitive to impact or friction. Shock sensitivity of the

liquid phase has been investigated by blasting cap techniques. In an inert atmos-

phere, an explosion temperature of 300°C has been observed for MMH vapor.

In thermal stability tests, the explosion temperature for MMH was found to be

between 545 ° - 700°F. 7

Ocular and skin tests have indicated that MI_4H is only temporarily irrita-

ting. MMH in contact with the skin or eyes can cause local damage resembling

burns. Continuous exposure of the eye to vapors will cause eye irratation and

conjunctivitis.

Inhalation of the vapor can cause local irritationof the respiratory tract,

with respiratory distress, and systemic effects resulting. Data from acute

exposures indicate that a single exposure to MMH does not caase liver damage;

however, repeated, prolonged exposures can cause damage to the liver and

kidneys.

Unsymmetrical Dimethylhydrazine

UDMH is resistant to air oxidatk,,n,but the vapor reacts slowly at am-

bient temperatu_s to form traces of several products. Carbon dioxide reacts

7. Jacobson, K.H., et ah "The Iahalation Toxicity o5 Methyiated Hydrazine
Derivatives." Chemical Corps. Medical Laboratories, Army Chemical Center,
Maryland, ML Research Report No. 292 (June 1954).
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wi_h UDMH to form a salt and extended exposure of UDMI-I to air or other car-

bon dioxide-containing gases could lead to eventual precipitation of the material.

The spontanecus decomposition temperature of UDMH, in an atmosphere

of nitrogen or helium, is 740°F to 750°F (393 to 399°C) at one atmosphere

pressure. The decomposition does no_ become explosive up to at least ll12°F

(600°C). Some carbonization takes place at 700 to 800°F.

UDMH is not shock sensitive. In work done by the Bureau of Mines it was

demonstrated that it could not be detonated in the conventional card-gap tests

even after deliberate contamination with materials which are potential sensitizers

such as rust, copper and magnesium turnings and aluminum powder. Negative

results were also obtained in a series of tests designed to place it under even

more severe conditions.

UDMH is a flammable material was a flash point of 34°F (Tag closed cup)

and flammal_ility limits in air from 2.5 to 95 volume %. The autoignition tem-

perature in air is 482°F. Although more stable than the other hydrazines, the

flash point is the lowest of the three: 5°F open cup, 34°F closed cup (comparable

to gasoline, and a consequence of UDMI-IIs greater volatility. )

UDMH is mildly irritating to the skin and eyes, and can penetrate the skin

causing systemic toxicity. The vapor is irritating to the eyes and respiratory

tract and can also cause systemic effects. UDMH is significantly different from

hydrazine as a toxicant in that no cases of permanent liver damage have been

documented in human exposures. Animal studies indicate that the most serious

after effect is convulsions. Depending on the degree of exposure, these range

from mild tremors to acute convulsions. Chronic low level exposures may

cause anemia.

Additional information on the toxicology and exposure limits of all three

hydrazine fuels is given in Appendix G.

Physical Properties

A number of physical properties, taken from the sources listed at the

start of this section, are presented in Table 2, 1,1 for the three primary

hydrazine fu_Is.
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TABLE 2.1.1

PHYSICAL PROPERTIES OF HYDRAZINE FUELS

!

Property

Molecular Weight

Boiling Point
(at one at'm)

Freezing Point

Liquid Density
at 77OF (25°C)

I Ib/gal

g/cc

Critical Pressure _atm

psia

t.pascal

Critical Temp- _ °F

erature L °C

Heat of Vapor- F Btu/lb

ization (@ 77°F, |Lkcal/mole
25oc)

Heat of Forma,,tion r Btu/lb

(liguid @ 77"F, L kcal/mole
25vC)

Heat of Combustion r Btu/lb
(Liquid@77-F, |- .- -
2sOc) LKcaumole

Heat Capac ity

Flash Point

(Tag Open Cup)

Autoignition Temp- r OF

erature LOc

Flammability Range (Vol.%)
in Air

Btu/Ib-°F

cal/mole-
oc

[::

N2_H4

32.04

236.3

113.5

35.6

2.0

8. 379

I.0040

145

2135

1.47x107

716

38O

60"/

10°7

+675

+11. 999

8359

148.6

0,737@77°F

23,62@25°C

125.6

52.0

518

27O

4.7-100

VIMH
I

46, 08

189.5

87.5

-62.27

-52.37

7. 297

.8743

81.3

1194

8.24x106

593.6

312

376.9

9. 648

+512.2

+13.109

12,177.

31i.7

0. 698@63 °F

i32.17@20°C

63

17.2

382

194, 3

2.5-98

UDMH

60. O8

146

63

-71

-57.2

6.54

0. 784

53.5

786

5.42x106

482

250

251

8,37

+381.5

+12.734

14,200

473

0.653@77 ° F

39.2@25°C

5

-15

482

250

2-95
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2.2 RECOMME]_DATIONS FROM OTHER SOURCES

At the time of the beginning of our study, a number of recommendations

already existed regarding the disposal of these propellants. The manufacturers

of the _ree primary hydrazine fuels all present recommended disposal pro-

cedures in their technical bulletins, and in addition anhydrous hydrazine had

been included in a very extensive study of the disposal of hazardous industrial

and mtu_cipal wastes performed by TRW Systems Group for the Envlronmen_l

P:rotectlon Agency. 1 These various recommendations are quoted below, where

the report by Ottinger et al is referred to as '_Fhe TRW Report".

The "Hazards of Chemical Rockets and Propellants Handbook" recommends

tha_ N2H 4, MMH, UDI,_rl, Aerozins 50 and MAF (Mixed Amine Fuels) '_e dis-

posed of by burning... Small quantities and dilute solutions can be collected in

a basin and reacted with compounds such as I0 percent hydrogen peroxide or

calcium hypochlorite. Neutralizing agents should be applied in excess. '_?

Anhydrous Hydrazine

Olin Chemicals: 'Waste hydrazine from spills or process effluent presents

a problem of neutralization prior to se_'ering, Commercial calcium hypochlo-

rite, containing 70% available chlorine (HTH), provides an ideal solution to this

problem. The reaction between the hydrazine and calcium hypochlorlte yields

nitrogen and calcium chloride. Other decontaminants may also be used (see

Table 2.2.1).

'rDralns from areas of hydrazlne handling should lead to s sump or holding

pond where neutralization can be effected in a very dilute solution, One mole of

calc'.um hypochlorlte is required per mole of hydrazins. On a weight baSiS

this is equivalent to 6.4 pounds of HTH per pound o_ hydrazine, Recommended

usage is seven to ten poubds of HTH per pound of hydrazine to provide an excess
, |,

I. Ottinger, R,S.; Blumenthal, J,L,; Dal Porto, D,F,; Gruber, G.i.;
Santy, M,J. ; and Shih, C.C, : '_ecommended Methods of Reduction, Neutral-
Ization. Recovery or Dispc_sl of Hazardous Waste." Report No. EPA-670/
2-73-053-i (August 1973). NTiS PB-244 $91,

2. '_azards of Cllemlcai Rockets at_d Propellants Handbook, Volume IIi:
Liquid Propellant Hafldllng, Storage and Ttansportatlon." Prepared by the
Liquid Propellant Handling and Storage Committee, assisted by the Committee
on Environmental Health and Toxicology, JANNAF Propulsion Committee,
Hazards Working Group. AD 870259, May 1972.
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of HTHo This is roughly equivalent to 0. 6 to 1o 0 per pound of HTH per gallon

of 1% solution of _ydrazine.

"Neutralization of hydrazlne with HTH is complete and rapid at pH 5, 0 to

8o 0o At lower pH, the reaction is complete, but may require a longer period

of time, At higher pH, the reaction may not proceed to completion.

"A dilute solution of hydrogen peroxide may also be used to neutralize

dilute hydrazlne wastes. One mole of hydrogen peroxide is required per mole

of hydrazine. A slight excess of peroxide is recommended to ensure complete

destruction of the hydrazlne. The addition of a trace amount of copper sulfate

will catalyze the reaction, causing it to proceed more rapidly.

| !

Table 2.2.1. Decontaminants for Hydrazine 8

Approximate

Decontaminant
Possible
Reaction Products

Heat Liberated

Kcal/Mole N2H 4

H20 N2H 4. xH20 3.9

NaHCO 3 (N2H 5) 2CO3, Na2CO 3 10

H3BO 3 A salt 5

KMnO 4 N 2 177

H202 NH 3, N3H 9i-121

CI 2 gas/HTH N 2 160/177

rl! Jl t

"For larger quantities, disposal is usually carried out by burning in in-

crements in a Smallj conerete-liaed pit. Hydrazine and aqueous solutions of

hydrazine are placed in the pit by means of a pipe or surface chaanel. The

hydrazine can be ignited by an igniter (squib-fired), an oxidizer such as nitrogen

tetroxide, or a torch. Concentrations as low as 40 percent by weight hydrazine

in water can be burned. Concentrations lower than 40 percent can be burned by

enrichii_ the dilute mixture with a soluble flamfnable liquid, such as alcohol, ,,4

3, Scott, F. E, ; Burns, J,J. ; and Lewis, B.: "Explosive 1_opez.ties of
Hydr_tzin e." Report on Investigations 4460, U.S. Department of the Interior,
Bureau of Mi_es, Pittsburgh, Pa., May 1949_

4, "AnhydroUs Hydrazin_ Handling and Storage." Oii,_ Che,_icals, 74G Fifth
AvenUe, New York, N.Y. 10022.
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Fisons Ltd. 5 recommended the following reactions for disposal of concen-

trated hydrazine solutions:

(1) With alkaline H202 in the presence of iron or copper (II) salts:

N2H 4+2H202 _ N 2+4H20

(2) With excess sodium hypochlorite:

N2H 4+2NaOC! _ 2NaCI+2H20÷N 2

(3) With atmospheric oxygen in the presence of copper (II) salts:

N2H 4+O 2 _ N 2 +2H20

The TRW Report:"Hydrazine as a waste will generally be encountered

as exc.gss material, as contaminated material from spills, or in aqueous streams

from chemical process industries. Because of the hazards involved (unpredict-

able &_composition), hydrazine iS usually not recovered in a concentrated form

from contaminated or dilute systems, in ponds or holding tanks dilute hydrazine

is decomposed by the air and bacteria into nitrogen, hydrogen, water and am-

monia. In concentrated form, hydrazine is destroyed by burning.

'_l_he safe disposal of hydrazine is defined in terms of the recommended

provisional limits in the atmosphere, water and soil. These recommended.

provisional limits are as follows:

C0ntaminant rin Air Provisional Limit Basis for Ree, ommendatior_
Hydrazine 0.01 ppm " 0, 01 TLV

Contaminant in Water

, and Sail .... ProvislQnal Limit Basis for Recommendatio_
Hydrazine 0.1 ppm Quantity will rapidly oxidize

to near-zero _oncentrat_on

'_Hydrazine iS generally destroyed by oxidation to water and nitrogen.

In dilute solution, dissolved oxygen, catalysis, or bacterial action convert

hydrazine to nitrogen, hydrogen, ammonia and water, Thereforet there are

no problems in deali_ with the products from _aste treatment. Current dis-

posal practices for hydr_tzine are briefly described in the foliowing parag_tphs

togetller with recomtnc._iations as to adequacy,

5. Written communication from MY, M,W. Whitmorej Chemical Development

Department, Flsons Ltd., Harston, Cambridge, England.
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Option No. 1 - Open Pit Burning

'_ydrazine poured into an open pit is burned to nitrogen and water.

The transfer of the hydrazine and the ignition must be accomplished by a re-

mote means. For drum quantities of hydrazine this method is generally accept-

able although since excessive NO x might be g_nerated another option would be

preferred.

Option No. 2 - Incineration

'_l'he Air Force has a minimum of ten trailer-mounted incinerators

capable of incinerating up to 6 GPM of hydrazine in a variety of mLxtures with

water (from 100 percent hydrazine to 100 percent water). The effluent from

the units is limited to 0.03 lbs/min NO x when incinerating hydrazine. These

units are acceptable for disposing of large quantities of hydraztne.

Option No. 3 - Catalytic Decomposition

"One of the applications for hydrazine is its use as a monopropellant.

When hydrazine is passed over a support (usually aluminum oxide) coated with

certain metals or metal oxides, it is decomposed into nitrogen, hydrogen and

ammonia. The details of catalyst composition are usuaUy found in the class-

ified literature. In most cases the catalyst is expensiw_ but TRW Systems

has preliminary data on a low cost catalyst that shouId be further investigated.

Option No. 4 - Diluting with Water _ Holdin_

"If hydrazine is diluted with water, e.g., after spills, and placed in open

lined ponds or holding tanks, the hydraztne is decomposed to water, nitrogen and

ammonia by air oxidation and bacterial action. For small quantities of hydraztne

in aqueous solution this method is acceptable if adequate space is available.

Option No, 5 -Chemical Treatment

'_ma/l quantities and dilute solutions are collected in open containers and

treated with oxidizing compounds such as 10 percent hydrogen peroxide or cal-

cium hypochlorite. The oxidizing agents should be applied slowly until in excess,

This method is not recommended except for small quantities because considerable

heat is liberated during decomposition. ,6

Recommended treatment: "Cotitrolled incineration with facilities for ef-

fluent scrubbing _.o abate any ammonia formed in the combustion process: '7

mm

6. Volume XI_', pages 329-331.

7. Volume I, page 215.



16

Monomethyl Hydraziae

Olin Chemicals: ,,ro reduce fire hazards, spilled MMIt may be diluted with

large amounts of water and neutralized by dilute hydrochloric acid or sulfuric

acid. This procedure ensures the trapping of _IMH vapors a:xi forms a MMH-

type salt.

"Diluted MMHD while no longer a fire hazard, may still be dangerous if

not disposed of properly. MMlt must not be permitted to drain into a potable

water system. Provisions mus, _ be m :_le to permit liquid drainage into a dis-

posal area where it may be burned in small increments or decomposed by a

chemical decontaminant such as calciwn hypochlorite (HTH tin) or hydrogen

peroxide.

"Empty drums and containers should be rinsed with water and steamed for

15 minutes to remove toxic and flammable vapor. ,8

Unsymmetrical Dimethylhydrazine
m

FMC Corporation: "Equipment can generally be decontaminated rather

simply by thorough flushing wish large volumes of water or with dilute acid.

It may be conveniently steaw.ed thereafter. It should, of course, be thoroughly

dried prior to return to Diraazine* service, making sure that no water has been

trapped at low points in the system.

'_)ur suggestion for deliberate destruction of comparatively large quantities

of Dimazin¢ is to burn it under proper supervision _tnd _afeg_.tarc' This tech-

nique has been successfully used in the field. Small quantities such as minor

spills, etc., usually can be disposed of most conveniently through sewering

with water.

"Copious water flushing is recommended for personnel decontamination, .9

Q f

* FMC's trademark for trDMH.

8. "Monomethyl Hydrazine Handling and Storage." Olif_ Chemicals, 120
Long Ridge Road, Stamford, Conn. 06904,

9. 'Dim_ine Properties, ,_pplicatlons, Reactions, Storage aixi Handliiig."
FMCCorpof'ation, Organic Chemicals Di_'lsion, 633 Third A_nue, Ne_v York,
N.Y. 10017.
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WASTE DISPOSAL PONDS: WATER DILUTION, AIR OXIDATION,
BACTERIAL ACTION

2.3. I Introduction

Water dilution of liquid hydrazine wastes followed by discharge to un-

treated holding ponds is one of the most common means of disposal of this fuel.

In the holding pond, air oxidation and bacterial action slowly convert the fuels

to nitrogen, carbon dioxide, and water acording to the following stoichiometric

equations:

la. 2N2H 4 +_O 2 _ N 2 + 2NH 3 + H20

2a. N2H 4 + 02 = 2H20 + N 2

lb. (CH 3) N2H 2 + 02 _ 2NH 3 + CO 2

2b. (CH3) N2H 3 + 2.502 -----_, CO 2 + 3H20 + N 2

Ic. (CH3) 2 N2H 2 + 2.502 _ 2NH 3 + 2CO 2 + H20

2c. (CH3) 2 N2H 2 + 402 ---"_ 2CO 2 + 4H20 + N 2

Even in cases where a holding pond is chemically treated, these air oxidation

reactions are often significant factors in the destruction of the hydrazines, and

can result in conslder_bte savings in the quantities of chemicals used.

Decomposition can be speeded by use of a catalyst, such as copper sulfate

or iron oxide, and by aeration - either bubbling air through the pond, or spraying

water from the pond into the air in a fountain. In _._y case, the. oxidation reaction

is .very. slow at atmospheric temperature, and the heat release in a pond will not

significantly raise the temperature such as to increase the rate _f reaction,

In normal sewage treatment practice, an oxidation pond utilizes bacteria

to aerobically stabilize the organic material present in the waste water, re-

sulting in the _onversion of C to CO 2, H 2 to H20, and N 2 to NHy The oxygen

for the bacteria is supplied by both air Surface transfer and the met:_bolism of

algae in the pond, The cycle is completed when tl_e algae use the waste stabil-

ization products CO 2 and NH 3 to synthesize new cells in the presence of sunlight,

and thet'eby liberate oxygen as an ettd product to be used by the bacteria for

oxidizing the organic wastes and synthesizing bacterial protoplasm. In addition

to biological stabilization, other processes taking place in oxidation ponds may



include balancing of the acids, coagulation and sedimentation of solids, and

neutralization of any alkalinity.

I/a pond has sufficient surface area relative to the rate of in/low, and

climatological factors are not too adverse, normal evaporation will be sufficient

to control the liquid level in the pond and no liquid waste need ever be withdrawn

from the pond, The effect of the pond on the environment will then be limited

to an atmospheric discharge only, plus whatever impact - adverse or otherwise -

the pond itself will have on the surroundings.

If periodic liquid discharges are required, the ammonia content of the water

could be a problem_ especially if the very restrictive ammonium hydroxide

"Provisional Limit" recommended by the TRW Study 1 (0o01 ppm in water and

soil) should be adopted. In addition, because of the slowness of the air oxidation

reaction, bye ponds (probably in series) might have to be used so that the pond

to be emptied could be protected front addition of new fuel for a period of time

prior to discharge. Selection of a ground waste dispobal site should be such

that the discharged waste infiltrates and percolates into the ground surface where

no possibility of Lmpairment exists. Disposal of wastes should not be near

fresh water aqutferst wells, or other usable water sources.

Near the beginning of our study, we visited existing oxidation ponds at

Vandenberg Air Force Base, Johnson Space Center, and White Sands Proving

Ground to observe the ponds and their operation first hand, and to discuss their

design, maintenance, and operation, Of p_rticular concern was the question of

their atmospher_._ discharges,

The only operational aeration pond was at Johnson Space Center, where

a very large flow of air is introduced through two H-shaped manifolds at the

bottom of a fairly deep concrete holding pond. The bubbles generated are quite

large, and result in a general roiling motion of the central part of the pen6 and

visible circulation throughout most of the pond. At Vandenberg AFB, a spray

pond has been constructed for experimental purposes, and one batch _f hydrazine

had been oxidized in the pond for data collection I:urposes at the time of our

_'isit. Oxidation ponds at White SaNds Proving Ground are essentially untreated

1. Ottlnger et at, op. cir., Volume XII, page 105.

........ . _._._ .,.._.._..._ _ _._-. --' --___- . _ -'_'_ _ -_-_--7- . ......... I " -- _- -- -_ ,, - -....
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holding ponds, with air oxidation taking place naturally at the surface but no

aeration.

Measurements at both Vandenberg and Johnson Space Conter show that

during aeration a period of time passes in which dissolved oxygen levels in the

water increase, but there is no sigrflficant reduction in bydrazine level. This

period is followed by a reduction in hydrazine content once the dissolved oxygen

reaches saturation,

Operating experience at the one operational holdit_g pond has apparently

been quite satisfactory. It should be n¢ted, however, that vex, y little hydrazine

disposal had taken place at JSC between the t'.me the aerator had been installed

and our visit. The primary reason for installation of the aerator was to provide

a means of quickly oxidizing the hydrazine in case of emergencies - the need for

pumping water from the pond to prevent overflow during very rainy weather, for

example, Starting with a 300 ppm N2H 4 concnetration in 0.5 million gallons of

water, the hydrazine concentration can be reduced to 5 ppm in about twenty hours,

with most of the reduction occurring in the last two to three hours. The addition

of copper sulfate or iron oxide as a catalyst contributes to the speed of oxidation.

In the experiment at Vandenberg, a concrete neutralization pond from the

Titan II program was reconfigured to allow recirculation of a water/fuel solution

through a pair o£ vertically mounted spray nozzles, the solution being sprayed

upward and allowed to fall back into the pond. The following paragraphs are

quoted from an informal report that we were given describing the experiment,

'_eventy thousand gallons of approximately 75 parts per..miilion mLxed

hydrazine fuels in water was contacted with atmospheric oxygen in the presence

of 0.2 mg/i copper ion. An attempt to maintain saturated solution of dissolved

oxygen was made by spraying the fuel/water solution through a spray head back

int_ the pond at a flow rate of 60 liters per minute. Oxidation was complete in

20 days with a superficial rate constant of I. 3 (days) "1. There was no sign-

tficant emissio_ to the environment and (energy consumed was) 450 kW - hours.

"It is interesting to note that dissolved oxygen concentrations for the

first eight days were considerably below saturation, indicating oxygen was

rate limit_g during this period..After the llth day it was not necessary to

operate the spray heads to maintain saturation. IXtring the first six days of

the test a marked evaporation of _'_ter occuered, on the order of 10,000 -
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14,000 gallons, which was followed by a rainy period in which the water level

rose to above initial levels. These fluctuations in water level had some effect

on concentrations measured, however the exact variations were not recorded.

From the data it can be inferred that three separate rate limiting steps or mech-

anisms are involved in fuel detoxification, occurring a,* different times. Initially

there is a rapid decrease lasting approximately one day. At these high concen-

trations it may be thought that atmospheric emission3 are ocourring. UDbIH was

only deteete_l once at the surface of the pond and that was 30 min'ttes after trans-

fer; the level was 6 ppm by volume as measured by a MSA Billionaire instrument

on the 0-10 scale. Atmospheric levels measured at two hours after trcnsfer

indicated only trace UDMH levels at 6 inch over the pond surface - no further

UDMH levels were detected for the remainder of the tes|.

"Auto-oxidation methods can be utilized safely to oxidize waste hydrazine

fuels to nontoxic waste less e._pensively than the cw:rent procedures. Published

data indicates higher reaction rates when perforr_ed with the optimum catalyst

concentrations; rates leading to complete detoxiftcation w_th on _. week contact

time could be expected."

We would add the comment that the very high loss of water during the non-

rainy period might not all be explained by evaporation: wind-blown spray seemed

to be very substantial the day we saw the spray heads in operation.

Our visits and discussions did not reveal any obvious problems in terms of

atmospheric releases, even though there undoubtedly is a certain amount of

ammonia release with any oxidation pond. Ammonia is the only undesirable end

product expected ff no chemicals (other than small quantities of catalyst) are

added to the pond. It will be largely dissolved in the water (ammonium hydroxide)

but a certain amount will be released to the air. The threshold Limit Value for

ammonia in air established by the American Conference of Governmental In-

dustrial Hygienists is 18 mg/m 3 (25 ppm by volume), and the provisional Max-

imum Exposure Limit recommended by the TRW Study 2 is . 02 mg/m 3. Actual

levels above oxidation pot_ls are difficult to calculate because of undetermined

effects of numerous variables such as insolation (intensity, hours per day, etc. ),

bacterial action, surface area versus depth, temperature, relative _lumtdity,

m

2 ...... Op. cit., Volume XII, page 104.
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wind velocities, etc. In view of the slow rates Involved with oxidation pond

processes, and the absence of reports of ammonia odors, we see no reason to

expect atmospheric ammonia releases to be a problem except perhaps in the

case of spray ponds.

This destruction method therefore looked very attractive to us from al-

most all points of view except the time factor - an important consideration

when dealing with highly toxic or carcinogenic substanceS, as there is consid-

erable virtue in destroying such materials as quickly as possible rather than

keeping them for days or weeks in open ponds. Two series of experiments

were performed for the purpose of learning more about the rates of reaction,

means of speeding the reactions, and obtaining general design criteria and

guidelines for these air oxidation ponds. These experiments are described in

the _ollowing sections; they were concerned primarily with aeration, since

natural pond surface oxidation atone is even less favorable in terms of destruc-

tion rates.

In addition, a review of the mechanisms of bubble formation, growth, and

detachment was carried out, and is included in this Handbook as Apper.dix C.

2.3,2 Description of Aeration Experiments

The e.x-perim,._ntal configuration used for performing the series of N2H 4

and MMH aeration experiments is shown in Figure 2.3.1. Two 10 gallon aquar-

iums each contain five gallons of diluted solution having N2H 4 or MMH concen-

trations from i5 tc 1100 pprn. Either CuSO 4 or Fe203 or both were introduced

as catalyst. Diluted N204 was added to several runs. Three medium porosity

spargers located near the bottom of each large tank provided air flows from

zero to approximately two liters per minute; maximum air flow through the

500 ml bubbler was approximately one liter per minute.

A Gast pump provided air for the system. This air was filtered through

a large cotton wad in an erhlenmeyer flask, Art agitator was provided for

stirring, but was infrequently used since sufficient agitation was provided by

the rising air b,ibbles to maintain homogeneity. Pinch clamps on the hose

lizies adjusted air flox': to the spargers, and the flow rate was measured by an

in-line flow-meter. Usually a much larger amount of air was injected than was
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necessary to maintain saturated oxygen (D. O. ) levels In the solution. The tanks

were loosely covered with aluminum foil to minimize evaporation losses.

The duration of runs was from two hot,, _ to nine days. Samples of liquid

were removed periodically and analyzed for (I) residual N2H 4 or MMH concen-

tration, (2) pH, (3) dissolved oxygen. Chlorine demand was measured in a few

cases. The temperature of the bath was measured at intervals. Analysis of

the hydrazines was performed using p-dlmethylamino benz_tldehyde.

2.3.3 Results

Figure 2.3.2 shows that the rate of decomposition of N2H 4 was consider-

ably higher when using. 02 rag/1 Cu ++ catalyst than without the catalyst. With-.

out the catalyst the oxidation of N2H 4 proceeded slowly in spite of ample air

bubbling and good agitation in the tank. Figure 2.3.3 shows that the Fe203 cat-

alyst was not as effective in increasing the rate of N2H 4 decomposition as the

Cu ++ catalyst (Run 3-3). The primary difficulty with the Fe203 catalyst was its

insolubility, resulting in most of it settling to the bottom of the tank so that con-

tact opportunity was considerably lessened. Runs 3-4 and 3-6 both show a rapid

decomposition rate, the N2H 4 concentration being reduced from over 300 ppm

to 1 ppm in one day. The curve for gun 3-5 also shows rapid _ecomposition _f

N2H 4 in the first day. This ruu was discontinued when the air hose disconnected

during the run.

Figure 2.3, 4 shows that the decomposition of N2H 4 was rapid when using

either Cu or Cu/Fe catalyst. The tests were not conclusive in deciding _n the

more efficient catalyst. Aimo_t complete disappearance of N2H 4 occurred

after two days of air treatment with either catalyst, starting with high concen-

trations. Figure 2.3,5 also shows high rates of decomposition of the hydra-

zines. The ._iMH decomposed more slowly than N2H 4.

In Figure 2.3.6, the MMH concentration decreased faster (Runs 5-1A,

5-1C) during the first 10-20 hours of aeration than thereafter. In all three runs

the reaction rate was relatively high until the concentrs*ion dropped to the 20-40

ppm level. Such a dropoff lu reaction rate with depletiou of one of the reactants

is normal in many chemical reactions_ as tho contact opportunity of the reacting

molecules is greatly reduced when nearing the depleti.onlevel,...__e.oxt.dant....................
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flow rates in all three runs, but particularly in Run 5-LA, were probably exces-

sive. This high flow rate, rather than a slow reaction rate, is the cause of the

high value of R l in Run 5-1A.

R I, the Reaction Index, in an arbitrarily established index to permit a

By definitionrelative comparison of rates of reaction of various Oxidants.

the reaction index is

R! -
M

t½ ffi the time in minutes required for 50% destruction
of fuel, as measured by the p-DAB analytical method,

Q = quantity of oxidant pumped into the solution during,

this time interval, in mg per liter of liquid.

M = initial fuel concentration in rag/liter,

where

We can further write

where

m = the oxidant mass feed rate to the treatment tank,

in rag/rain.

V = the liquid volume in the treatment tank, in liters.

It will be noted that the Reaction Index has dimensions of time. R I was found to

be useful for correlating parameters such as reaction rate_ reactant concen.-

trations, volume and mass feed rate.

The D.O. in Run 5-1A increased slowly _vith time and reached approx--

imately 9 ppm after 72 hours aeration, Ar .ncrease in D. O, as the MMH is

destroyed is to be e.x'pected since MMH is an o.,cygen scavenger. Neither the

D,O. nor the pH are shown for 5-1B and 5-1C, to prevent clutter. The curves

shown are typical. The pH dropped frcm approximately 8 to 6 during aeration,

showing an Increase in acidity from the oxidation products formed, The time

required to decompose 50% of the MMH was on the order of 4 to 5 hours.

Figure 2,3,7 shows that the R I was only slightly tiigher in Runs 5-2A

and 5-2B than in 5-1B and 5-1Cj aIthougll the MMH concentration was increased

from about 200 to about 1000 ppm. The time to decompose 50% of the MMH was

on the order of 4 to 5 hours.

.............
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Run #

Volume of Solution

Catalyst
Oxidant
Oxidant Flow Rate
Iaitiai MMH

C oncentration

RT_me Required for

50% Decomposition

5-2B

16 24 32

Time in Hours

5-ZA

19.0 1iters_.
0.2 mg Cu /liter
Air
6 liters/rain

780 p.nm

3.13x 104rain

240 rain

5-2A

4O

5-2B

19.0 liters_._.

0.2 mg Cu /liter
Air

6 liters/rain

1060 ppm

3.32x 104 rain

288 rain

48

2.3.7 Air oxidation of MMH.
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The curves for Runs 5-3A and 5-4A (Figure 2.3.8) show the pronounced

effect the Cu ++ catalyst had on R I. Without catalyst RI was about 500 times

higher than with catalyst. The time required to decompose 50% of the MMH

without catalyst was about 20 times longer than to decompose it with catalyst..

22 hours versus 1 hour,

Figure 2.3, 9 shows the effects of no catalyst and of not bubbling air

through the MMH solution. The R I in Run 5-5 was 1.46 x 105, which is one

of the poorest results with Cu ++ catalyst. However, in the absence of a cat-

alyst the R I increased to 5, 7 x 106 in Run 5-5A, The absorption of 02 occurred

at a lower rate than when bubbling air through the solution. In Run 5-11, the

50c_ decomposition time was 33 hours even though a catalyst was present. In

Run 5-5A, without catalyst, the 50_ decor_position time vras 30 hours. Thus

in the latter two runs MMH decomposition was six to seven times slower than in

Run 5-5, containing catalyst.

The D.O. and pH are shown for RUns 5-5A and 5-11. The pH varied

little in either run. The D.O. naturally was lower in Run 5-11, without air

agitation, and fluctuated as absorption occurred.

Run 5-13 (Figure 2, 3.10) exhibited a more rapid reaction ra'£e than those

obtained in previous similar runs. The re_son for this could not be found, and

might be due to an experiment error in the MMH analysis step. The reaction

rates in Run 5-13B, without catalyst and contzining N204, and in Run 5-13C, no

air bubbling and containing N204, were very slow compared to the previous

rlms.

The results are also presented in Tables 2.3.1 and 2.3, 2. The values

obtained for R I are seen to cover a range of approximately three orders of

magnitude, depending on the various operating conditions. Optimum operating

conditions obviously could not be _.stablished by the runs performed in th_ lab-

oratory, It is evident from these data, however, that the presence of catalyst

plays a major role in controlling the rate of reaction. At low pH, as derived
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Run #

Volume of Solution

Catalyst
Oxidant
Oxidant Flow Rate
Initial M_IH

Concentration

RT_me Required for

50% Decomposition

32

5-4A

5-3A

24 32

Time in Hours

40 48

5-3A 5-,_

19.0 liters++ 19.0 liters
0.2 m E Cu /liter No catalyst
Air Air
6 liters/rain 6 liters/rain

51 ppm 51 ppm

3.00 x 104 mtn 1.45 x 107

60 min 1320 min

2.3.8 Air oxidatiotl of MMH.
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24O

200
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120

0

_i 8O

4O

5-11

0 8 16 24 32

Time in Hours

40 48

12

10

8

6
o

4

0

Run # 5-5 5-5A 5-11

Volume of Solution 19 liters ++ 19 liters 19 liters .
Catalyst 0.2 mg Cu /liter None 0.2 mg Cue'/liter
Oxidant Air Air Air

Oxidant Flow 1Ra'_ _ iiters/min 6 liters/rain None

Initial MMH 228 ppm 240 ppm 250 ppm
Concentration

R I 1.46 x 105 min 5.73 x 106 rain
T_me Required for 280 rain 1800 rain 1980 rain

50% Decomposition

2.3.9 Air oxidation of MMH
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No Catalyst

5-I3A

13C

24 36 48 60 72

Time in Hours

Run # 5-13A 5-13B 5-13C

Volume of Solution 19.0 liters++ 19.0 liters 19.0 liters_+
Catalyst 0.2 mg Cu /liter No catalyst 0.2 mg Cu /liter
Oxidant Air Alr Air
Oxidant Flow Rate 6 liters/rain 6 liters/rain None

Initial MI_IH 460 ppm 480 ppm 340 ppm
Concentration

N204Concentration None 200 ppm 6 200 ppm
7.47 x 103 rain 3.33 x I0

Rlme Required for 90 mln 1940 min After 3 days only

50% Decomposition 9% decomposed

2.3. I0 Air oxidation of .MMH
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Run No.

5-IA

5-1B

5-IC

5-2A

5-2B

5-3A

5-4A

5-5A

5-5

5-11

5-12A

5-12B

S-13C

5-14

TABLE 2.3.1

SUMMARY OF _IH AERATION RUNS (Second Series)

Catalyst

i |l|

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Y,_s

Yes

No

Yes

Yes

No

Yes

NO

MMH
Concen-

tration

ppm

160

295

140

780

1060

51

51

240

228

250

125

125

46O

480

34O

18

R I

Minutes

1,93 x 105

i. 12 x 104

2. i0 x 104

3.13 x 104

3.32 x 104

,, O0 x 104

1.45 x 107

5.73 x 106

1.4_ x 105

7.47 x 103

3.33 x 103

Remarks

i

Excessive amount

of air used

No air bubbling

Contains 150 ppm

N204

Contains 150 ppm

N20 4

Contains 200 ppm

N20 4

Contains 200 ppm

N20 4

No air bubbling

No air bubbling
(natural

evaporation)

,._ qtt" o t

(_? P,.,)R Q:;A: [TY
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from introducing N204, the reaction rate was adversely affected. The R i values

of runs without catalyst are 100 to I000 times longer than the R I values of runs

with catalyst. Aerated runs have much lower R I values (higher reaction rates)

than runs under stagnant conditions.

It is believed that even the best R I figures in the table can be lowered by

adjusting the air flow to an optimum value.

The chlorine demand, which corresponds roughly to the amount of fuel

in solution, was measured in some runs, with results in good agreement with

the other measurements.

2.3.4 Conclusions

The major disadvantage of the aeration method is the amount of time re-

quired. For initial concentrations in the range studied (up to 1100 ppm) we

have shown that 90% or more of the fuel is oxidized within two to three days in

runs with catalyst, adequate air bubbling, and no dissolved N204. However, the

rate decreases as the concentration drops below 40 ppm or so, and really low

concentrations will require long periods of time. In many cases, even the two

day time period will be unacceptably long, especially in the case of the methyl-

ated hydrazines with their possible carcinogenic risks.

Oxygenation (use of pure 02 instead of air), which ts covered in the fol-

lowing section, is of interest because of the possibility of increasing the reaction

rate and at the same time reducing the size of equipment, time and space re-

quirements.

One of the characteristic aspects of aeration is the relatively high

energy requirement for 02 dissolution from the atmosphere into the aqueous

solution of fuel. This cost is a consequence of the basic mass transfer process

which is almost entirely liquid phase controlled, a feature which is a character-

istic of all procc_ses involving the dissolution of sparingly soluble gases in

liquids. The presence of the large amount of N 2 in air further impedes the 0 2

transfer by reducing the available 0 2 partial pressure driving potentialfor the

interphase transfer process. As a result, substantial amounts of energy are

expended in creating a large gas-liquid surface area and a high degree of inter-

facialturbulence to enhance the Interphase mass transfer rate. The high energy
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costs of the aeration method are at least partially off,,_et, however, by relatively

low expected maintenance and equipment costs, low labor requirement, and the

small amounts of chemicals required.

The major advantage of this method is its simplicity, the fact that poten-

tlaUy harndul chemicals are not required, and the fact that any need for sec-

ondary disposal of a liquid effluent can be precluded by proper design. The

pond water can be reused Indefinitely, and evaporative losses made up by water

addition if rainfall is inadequate. The copper ior s contained in the pond will

serve as an effective algaecide.

The question of atmospheric release is stilllargely unresolved. The pri-

mary oxidation products are water, nitrogen, carbon dioxide, and ammonia. An

odor of NH 3 or amine was noticed in the vicinityof the laboratory tanks for one

or two hours after adding hydrazine or MMH. No air sample was taken to ascer-

tain the concentration of NH 3 above the liquidsurface, or the possible presence

and concentration of N2H 4 or MMH above the surface. Because of the likelihood

that these gases are evolved during the early stages of the process, we bel!eve

application of the aeration process in an open pond should be approached with

considerable caution except as a final step following some other primary treat-

ment stage. In a closed system, the process is a very attractiveore prodded

the time involved is not a problem, and thatthe following conditions are met:

1. ContInuous air bubbling.

2. Use of copper catalyst, or equivalent.

3. pH maintained above nine.



40

2.4 OXYGENATION

2.4. I Introduction

An alternative approach to the oxidation of hydrazine fuels in dilute

aqueous solutions, mentioned briefly at the end of the preceding section, is

to bubble pure oxygen through the solution rather than air. This variation is

currently seeing increased application in sewage treatment and potable water

treatment processes; McKirmey and Pfeffer I reviewed _he state-of-the-art

several years ago and listed several advantages relative to "-eration:

I. The possibility of avoiding excessively high gas flow rates, there-

by decreasing power requirements.

2. Increased rate of stabilizationof organic material.

3. The abilityto operate at increased organic lo_'dings.

4. Reduction in plant size and equipment.

5. Increase in D.O. content of pregnant solution being treated.

One disadvantage of oxidation using pure 02 or 03 is the need for a closed

system. The space occupied by such a system can be small compared to a

pond, however. Furthermore, the possible need for a closed system even in the

case of aeration, because of the release, of NH 3 and fuel vapors, was mentioned

in the preceding section.

T_e basic oxidation equations for 02 treatment are the s_me as those

written at the beginning of the preceding section. The experiments described

below are also quite similar to the aerntlon experiments described in the

preceding section.

l

2.4.2 Experimental _esultz

The laboratory apparatus Used for the 0 2 runs is shown in Figure 2.4. I,

The experimental procedure was the same as in the aeration runs. The solution

contained MMH in allof these r_ms, at concentrations up to 4500 ppm. N204

was also present in two of the runs, at concentrations up to 4000 ppm.

1. McKlnney, R.E. and Pfeffer, J.T. : 'Dxygon-Enriched Air for Bio-

logical Waste Treatments, " Water and Sewage Works v October 1965.

L
|.....
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Table 2.4. I shows that the five runs with catalyst, and without N204,

had R I values in the 1300 to 4800 minute range, which is about one order of

magnitude lower than those obtained by aeration. It also shows that the three

runs without catalyst had essentially little or no reduction of MMH within the

time period° In the two runs containing dissolved N204, the reduction was

only about 20% after two hour's of oxygenation. In general, these results are

similar _o those obtained in the aeration runs except for the higher reaction rate.

The pH generally did not change much with pure 0 2, in contrast to 03 or air.

With air, pH changed by 1 + 1 pH unit, In 02 runs, pH decreased by 5 +_. 5

units in runs containing only MMH,

Figure 2.4.2 shows the slope of curve 21 to be very steep, while the

slope of curve 21A is about zero. The D.O. curves increase to the 11 or 12

ppm level, then drop off somewhat after 90 minutes to about 8 - 10 ppm. The

initial pH of Run 21A was 8.8 and changed very little during oxygenation. The

pH of Run 21 dropped about 1 pH unit indicating formation of some acidic re-

action products, as was e:_-pected.

Figure 2.4.3 shows the steep slopes of curves 22 and 37, with a catalyst,

compared to zero slope in curve 22A without a catalyst. The D.O. for Run 37

could not be measured after 15 minutes of sparging, probably as a result of

miscalibration of the D.O. instrument. The D.O. of treated solutions in Runs

22 and 22A was approximately 9 ppm.

Figure 2.4.4 again shows the deletorious effect of dissolved N20 4 on

rate of reaction in Runs 24 and 25, compared with Run 23 without N20 4. The

D,O. curves are similar _.o previous runs. The pH in Runs 24 and 25 was

approximately .7

Figure 2.4.5 shows the steep slopes of cur_'es 23 and 26 with a catalyst

and the slight slope of curve 23A not containing a catalyst. The.pH was be-

tween 8 and 10 in the three runs and did not change appreciably during the

oxygenation period.

In general, the time required to decompose 50% MI_IH in oxygenated

runs with catalyst was on the order of 35 minutes, except in Run 2I, which was

a special (low concentration) case.
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0 20 40 60 80 100 120

Time (minutes)

Run _ 21

Volume of Solution 400 ml

Catalyst 0.2 mg Cu'+/liter

Oxidant Oxygen
Oxidant Flow Rate I liter/rain

InitialMMH 170 ppm

Concentration

RT[ 21,90min
me Required for 10 rain
50_, Reduction

21A

400 ml

No Catalyst
Oxygen
1 liter/rain

200 ppm

Figure 2.4.2 Oxygcnation of MM}I
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pH mad Dissolved Oxygen (ppm)
oo _

MMH Concentration (ppm_

OoRun # 22 ..A

Volume of Solution 400 mt 400 ml

Catalyst 0.2 mg Cu°"/liter No catalyst

Oxidant Oxygen Oxygen
Oxidant Flow Rate I liter/rain ! liter/rain

InitialMMH I000 ppm 1500 ppm

Concentration

_[ 5370 rainme Required for 38 rain

50_ Decomposition

Figure 2..l.3 Oxygenation of MMH

37

400 ml
O. 2 mg Cu"'/liter

Oxygen
I liter/rain

!125 ppm

3380 rain

32 mln

"-I .................I
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0
0 40 80 120 160 200

Time (minutes)

Run # 23 24

Volume of Solution 400 ml 400 ml
Catalyst 0.2 mg Cu++/liter 0.2 mg Cu++/liter

Oxidant Oxygen Oxygen
Oxidant Flow Rate 1 liter/rain 1 liter/rain

Initial ,M,_m 2600 ppm 1050 ppm

Conee ntr ation

Initial N20 4 ...... 2000 ppm
Coneetttration

MMH Concentration 2600 ppm 900 ppm

after adding N204

RT_ 17_0 mittme Required for 35 rain .......
50% Reauction

0
240

_5

400 ml
0.2 mg Cu++/liter

Oxygen
1 liter/rain

2100 ppm

4000 ppm

1750 ppm

Figure 2.4.4 Oxygenation of MMH



47

pH and Dissolved Oxygen (ppm)
o0 _ ._ Csl O
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?

Run t '2.3 23A

Volume of Solution 400 mls 400 mls

Catalyst O. 2 mg Cu*+/liter No catalyst

Oxidant Oxygen OxFgen
Oxidant Flow Rate I liter/rain 1 liter/rain

Initial MMH 2600 ppm 2100 ppm
Concentration

RT_ 1750 rainme Required for 35 min
50c_ Reduction

26

400 mls

O. 2 mg Cu÷*/liter

Oxygen
1 li_er/min

4500 ppm

1460 rain
42 rain

Figure 2.4.5 Oxygenation of MMH
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2.4.3 Conclusions

These experiments showed that destruction of M,_IH by oxygenation re-

quires a moderate period of time under the various conditions provided in the

experimental runs. Use of a csmlyst increases the reaction rate of M,'_ wtth

02 by a factor of ten to one hundred. The presence of dissolved N204 hinders

the reaction of MMH with 02.
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2. _ OZONATION

2. _ 1 Introduction

A variation on the oxygenation process described in the preceding section

involves the addition of an ozonator between the 0 2 supply and the treatment

tank. The ozonator converts some of the flowing 0 2 to 0 3, a much more

powerful oxidizing agent, for the purpose of destroying hydrazine fuels in the

aqueous solution more rapidly and completely. Disadvantages of this process,

in addition to the increased cost and complexity, are the toxicityof the ozone

itselfand the increased corrosiveness of the 0 3. However, unlike chlorine

and chlorine-containing compounds (discussed in the following sections) this

process need not introduce a new type of atom to the solution with the attendant

risk of forming stillmore harmful products. The initialcapitalcost of an

ozone facilityis higher than that of a chlorine facility,but operating costs

are lower. Residual 03 at the end of the process is easily decomposed either

by thermal means or by a chemical reducing agent. Problems of temperature

and pressure are minimal and readily solvable.

Ozone is a colorless gas at room temperature and is an aUotropic form

o£ oxygen. Like O 2, O 3 is a supporter of combustion and is one of the most

powerful oxidizing agents known. R has an electronegative oxidation potential

exceeded only by flourine. 0 3 attacks almost all organic compounds. The

reaction mechanism is believed to involve the free radical formed by dissociation

of the 0 3 molecule,

03-----_ 02 * O"
(Free Radical)

1
although this has been disputed by certain authours. Among the many organic

_?_ctionaI groupings which are oxidized by 0 3 are amines, mercaptans, al-

dehydes, and hydrocarbons.

The major reaction products of ozonation of organic compounds may ir -

clude CO 2, N 2, or NO 3. Minor reaction products may incluJe intermediates

I. Trambarulo, R., et.al.: '_rhe Molecular Structure, Dipole _loment

& Factors of Ozone from its Microwave Spectrum". The Journal of Chemical

Physics, Volume 21, page 85! (1953).
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which were not investigated or quantified in the laboratory experiments that

we performed. The treatment by-products are usually harmless or only

slightly toxic, and may be beneficial (02). There is normally an increase in

dissolved oxygen (D.O.) as water undergoes this treatment process. The small

amount of NO 3 formed should not interfere with regulations for dumping into

streams.

In the ozone oxidation, only one atom of oxygen from the 0 3 molecule

is highly reactive. On thisbasis, for example, one pound of MMH should

consume 4.5 Ibs. 0 3 and yield 9 Ibs. of molecular 0 2 as by-product:

CH3N2H3 + 203=-._ CH3OH _-N 2 + H20 + 20 2

some of the 0 2 would also react with the Ml_ff-l.

At normal temperatures 03 residuals disappear rapidly from water,

according to the equation:

P = i00 exp (-0.275t)

where p = percent of residual 0 3 at time t.

03 is more soluble in water than 0 2, but because itsavailable partial

pressure is very low, concentrations of 03 above a few mg/l are difficultto

obtain under normal conditions of temperature and pressure. Figure 2.5.1

shows the theoretical solubilityof 0 3 in water. The presence of reactive

species in solution will greatly alter the solubilityof bubbling 0 3 by shifting

the equilibrium. _ I , i i _

, i000 I_

\

\

4oo 

200i-
l I I I • I I
0 10 20 30 40 50 60

Figure 2.5.1 Solubility of ozone in water, in the absence of
other reactive species.
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Decomposition of 0 3 is accelerated 2 by the presence of silver, maganese

dioxide, sodium hydroxide, Cl2 and other materi._Is. Italso decomposes photo-

chemically in moist air in the presence of certain pollutants. However, de-

composition is sl_w enough to pern'litthe use of O3-air or O3-O 2 mixture

streams for effect,_g destruction of many organic compounds. 03 retains its

strong oxidizing abilityin aqueous solution. Temperature, pH, concentration

of reaction products, and other factors may be important for achieving satis-

factory results.

Ozone is toxic and can be dangerous to humans, plants, and aquatic forms

of life. In water the hal,-lifeof 0 3 is approximately 15-20 minutes, but in air

0 3 exists for much lor._erperiods (hours or days). Itis therefore quite im-

portant to monitor atmospheric 03 levels around the generating site.

The effects of O 3 on humans are described by Evans as follows: "The

clinicaleffects immediately recognized from inhaling 0 3 range from dislike

of odor, headaches, drying of the mucous membranes of the mouth, nose, and

throat, and changes in visual acuity. Continued exposure results in more serious

changes such as functionalderangements of the lung, pulmonary congestion,

and edema. ,,3 A threshold range was assigned by Stern for each of these mani-
4

festations:

Odor Detection .02 to. 05 ppm

Irritationof nose, throat .05

Dryness of the upper respir,_torymucosa .1

Dryness of thrca_ begins at .1

He.".daches, 30 minutes or longer 1.0

Changes in visual parameters .2 to. 5

Changes in pulmonary functions 0.1 to 1.0

The established TLV for ozone is 0.1 ppm by volume in air, or 0.2 mg/m 3.

n

2. Hann, V.A. and Manley, T.C. : "Ozone". Ene.yclopedia of Chemical
Technolo$_', Volume 9, page 735 {1952).

3. Evans, F.L., editor: Ozone in water and Waste Water Treatment.

Ann Arbor Science Publishing, Inc., Ann Arbor, Michigan {1972).

4. Stern, A.C. : Air I'ollution, Volume 1, Second edition. Academic
Press, New York, N.Y. {1968).



52

Ozone is also believed to injure the parenchyma in the leaves of plants

causing cellular collapse and pigmentation of the cellwalls. 5 Small pale buff

to reddish-brown lesions may appear at the injury threshold level of. 03 ppm

after 4 hours exposure. By comparison with chlorine the epidermis and

mesophyll cells are affected. A bleaching occurs between the veins, tip and

margin. Burn and leafabscission also occur.

Because of the potentialeffectiveness of ozone as a means of destroying

hydrazine fuels in dilute aqueous solutions, and the complete absence of any

previous work done on thismethod either in the laboratory or in fieldappll-

cations, an experimental investigationwas performed as a part of our study,

as described in the following subsections. Economic considerations are also

treated briefly at the end of this section.

2.5.2 Description ofOzonation Experiments

Figure 2.5.2 shows schematically the experimental apparatus mat was

used. The system was arr_ nged so thateither air or pure oxygen could be used

as input to the ozonator. __'neO3/C 2 or O3/air mixture was bubbled intothe

water/fuel solution as in the aeration and oxygenation experiments discribed in

the preceding sections, .rodthe gaseous chlorine experiments described in the

following section. A contactor system for adsorbing the 0 3 would have provided

more economical operation; the bubbler was used instead to provide maximum

conformity with the other experiments.

0 3 for the experimental study was provided by a small commercial elec-

tricaidischarge unit. Both dry 02 from a commercial tank, and air from a

Gast pump, were tried as an 03 source. Mensured amounts of the gas mLxture

were bubbles through a medium porosity difuser, located near the bottom of the

gas absorption bottle, for periods of time necessary to effectcomplete or nearly

complete destruction of the fuel. Contemporane_tls gas _nd liquidanalyses

were performed to obtain rates, end products, temper_t,_re, D.O., pH and re-

sidual N2H 4 or MMH concentrations.

5. Stern, A.C., et ah Fundamentals of Air Pollution. Academic Fress,

New York, N.Y. (1968).
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Two series of experiments were run: a series of nine experiments with

N2H 4 soT.utions, followed by a series of ten experiments with MlVlI-I solutions.

The am¢,unts of O 3 generated varied somewhat depending on the oxygen source

and the setting of the instrument; the approximate rates were 17 and 33 rag/rain,

using air and 0 2 respectively, in the MI_H-Iruns, and 20 rag/rain (using 0 2 only

as the feed for the ozonator) in the N2H 4 runs. These generation rates have

been estimated from the manufacturer's data sheet supplied with the ozonator;

they were not measured. In all cases they represent small quantities relative

to the 0 2 flow t.ate, which was between 3150 and 9500 rag/rain when pure O 2

was the feed stream, and 1325 rag/rain when air was used.

Small samples (5-i0 ml) were removed periodically during each run and

analyzed for residual N2H 4 or MlV_rI, using the p-DAB reagent method. Ozone

was analyzed using the orthotolidtne reagent method 6 after establishing a con-

centration curve. The temperature was measured at 5 -- 10 minute intervals.

6. '_Standard ,_Iethod_ for the Examination of Water and Waste Water. "

American PubYic Health Association, New York, (1966).
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2:5.3 Results

The N2H 4 concentration and temperature vs. bubbling time are plotted

for the N2H 4 tests in Figures 2. S.3 through 2.5.7. The feed to the ozonator

was 0 2 In all of these rims, at a flow rate of 7.1 l/rain. The 0 2 generation

rate was 20 mg/min, or approximately one part 0 3 to 475 parts 02, by mass.

Figure 2.5.3 shows {Tests 2, 3, and 4) that a 5000 ppm N2H 4 solution was

oxidized by 0 3 in a controlled manner within a two hour period to about the 5

ppm concentration - a 99.9_ reduction. As a comparison, in Test 5, a similar

N2H 4 solution was reduced by air bubbling only to the 3825 pprn level - a 24%

reduction. Evaporation losses were not determined, but they may be assumed

to be nearly identical for both set ups or slightly higher in Test 5 due to initial

preheating.

In Test 6 (Figure 2.5.4), the ozonation of a preheated solution was only

very slightly less effective than in tests 1 through 4 - _ 97.9% reduction in 110

minutes. This is opposite to the anticipated quicker reaction at e_evated temp-

erature. This result was probably due to the more rapid disintegration {or lower

solubility)of ozone in warm water. The shape of curve 6 corresponds closely

with the shape of curve 7, resulting from a solution approximately 10 times

stronger.

In Figure 2.5.5 are plotted the results of Tests 7, 8, and 9, with solutions

containing higher initialN2H 4 concentrations. The curves do not follow any

particular pattern. There may be yet undetermined variables affectingthe

ozonntion. ,Alternately,the ozonator itselfwas rnisbel_ving during these runs,

which may partly account for the variations.

In Figures 2.5.6 and 2.5.7 are plotted curves showing temperature as

a function of bubbling t_e. The temperature increased as the reactions pro-

ceeded, then leveled off and flnallydropped when the N2H 4 was reduced "_oa

low level.

Table 2,5.1 shows 03 concentration in distilledwater after Lubbling

for the stated times. These figures indicate {very roughly) the 03 concentration

to be expected in the N2H 4 solution.

The results are summarized in Table 2.5.2, where R I values are cal-

cnlated on the basis of the totaloxygen flow rate. Itis clearly seen that the
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TABLE 2.5.1

CONCENTKAT![ON OF 0 3 IN DISTILLED WATER

(Vol. = 250 ml)

(lab. amblont temp)

TIME OF

BUBBLING 0 3
(rain.)

O_C ONC ENTKATION
(_ver_e of 2 Determinations)

(ppm)

5 .69

10 .80

20 .71

30 .60

40 1.12

_!ote: Lange's "Handbook of Chemistry" gives the following solubilitydata for

0 3 inH20: 0.88cc@0nC, 0cc@60°C.
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TABLE 2.5.2

SUM,_LARY OF N2H 40ZONATION EXPERIMENTS

Oxygen flow rate = 7.1 litersper minute

Ozone generation rate = 20 mg per minute

Test

Number

m

2

3

4

6*

7

8

9

Volume

Treated

(ml)

250

250

250

500

120

250

250

Initial

N2H 4

(ppm)

5150

5100

5100

3550

38,250

42,750

37,250

t½
(rain)

17--

17

2O

47

62

142

128

R I

(rain)

2370

2390

3310

13,100

8800

19,900

18,600

* Solution was heated before introducing oxidant
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best R I values were about 50_c higher than the best values obtained In the case

of oxygenation of MMH. The probable cause is the failure to use a catalyst in

the ozonation runs; it will be recalled that oxygenation runs without catalyst

yielded extremely slow destruction rates. Compared to those runs, the bene-

ficial effect of generating small quantifies of ozone can clearly be seen.

To further investigate this question of what effect, if any, O 3 generation

will have on fuel decomposition, a second series of experiments was run on

MMH solutions with catalyst addition in the last three runs. Initial fuel con-

ce_.rations were limited to more realistic levels so that a larger number of

meaning_ful data points would be obtained. The results are shown in Figures

2.5.8 through 2.5.13.

Generally, a first order kinetic reaction rate could be assumed between

0 3 and _IMH. The plots show typical reduction curves in which MMH concen-

tration is plotted vs. reaction time. The evident characteristic is that the

initial reaction at higher concentration is quite rapid, but the rate slows down

as the MMH concentration decreases to near exhaustion. Strictly speaking,

the curve is not truly representative of the reaction rate, since the O 3 ad-

dition w_s restricted by the generating capacity of the ozonator. Although an

0 3 concentration of only about 1 ppm existed in the water solution, the ,'vIMH

concentration (up to 5600 ppm) was reduced to zero within reasonable time

periods.

The results are also presented in Table 2.8.3. The O2/O 3 runs without

catalyst _ve generally better results than the previous series of tests, and in

fact are slightly better than the best oxygenation (no ozone) runs with catalyst.

When catalyst was added, the results improved very significantly, yielding R I

values one to two orders of magnitude better than straight oxygenation, and far

better than aeration.

Table 2.5.4 presents percent reduction as a function of time. The three

runs with catalyst are not included in this table because of their much greater

rates of destruction; _vI_IH reduction _._ already essentially complete at fif-

teen mirutes in these runs.
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,_.,e following additional observations can be made based on these graphs

and tables:

lo

o

.

o

The rate of MMH reduction by 03 was greater in Run 15A, where

the ozonator is svpplied with pure 02 rather than undried air, than

in Run 15. This result is attributedto a higher conversion efficiency

in the ozonator, and to the higher partial pressure of the 03/0 2 gas

rnLxture resulting in a greater reaction rate.

In Runs 15, 15A, and 18A, two hours time was required to essen-

tiallycomplete the MMH reduction.

In Runs 16, 16A, and 17A destruction of MMH was only 66, 78, and

42% complete after two hours. Itis obvious t_._.reaction rate was

decreased considerably by the presence of dissolved N20.t. This

N204 created a highly acidic condition by virtue of the NO 3 and

NO o ions formed in solution. In Run 17A, containing the highest
m

amount of N204, the percent reduction was the lowest of the ten runs.

UV lightdid not materially affectthe reaction rate (Run 44).

-"4

2.5.4 Economic Considerations

Our experimental study was too limited, both in scale and scope, to allow

predictions of reliable operating costs for the ozonation system, or cost compar-

isons with other treatment processes. A rather thorough study of costs in _.,

quite comparable situation, the treatment of cyanide wastes, was found in the

literature, however, and those results are presented here as a rough gide to

both order of magnitude costs involved and cost comparisons. Itshould be noted

that the Chemical Oxygen Demand {COD} figures for MMH treatment and cyanide

treatment are similar.

Figure 2.5.14 presents the cost curves from the cyanide s_dy for three

oxidants that _xe of interest for the treatment of hydrazine fuels (see the fol-

lowing sections._ Although the scales o_ the quantity and cost coordinates would

be somewhat different for hydrazine fuels, the general trends are ex'pectedto

be similar. Itis seen thatozone treatment is economically most attractive in

cases where very large amounts must be treated per day, whereas sodium

•-*--_ ._'.,;' ". "=......_--'-=--',.._"_,-a_':. _ , _";..°.' .- -- --.--- _ _r.................
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hypochlorite is most attractive for small quantltios, up to the point where the

use of gaseous chlorine in tank car quantities becomes practical. Gaseous

chlorine is most economically favorable in the intermediate region, where tank

car quantities are indicated but below the ozone crossover point.

Operating costs of an ozone plant should includ9 z_ot only the power being

consumed in the corona ozonator but also the power being consumed by the aux-

iliary equipmem such as pumps, compressors, dryer, and refrigeration systems.

A rough estimate is that 2/3 of the power is consumed by the O 3 generator and

1/3 is consumed by the auxiliary equipment. Cost figures based on reports

from Philadelphia, Pennsylvania, where 0 3 has been used in the treatment of

water for many years, indicate that the electrical power requirements to pro-

duce one pound of O 3 from air are 11.6 kw-hr, which includes the current for

lighting, heating, and the recording equipment. 7

2.5.5 Discussion

The use of an oxygen feed system with an ozonator is technically quite at-

tractive if a catalyst is added to the aqueous fuel solution. Destruction rates are

equivalent to those obtained by chlorination (presented in the following two sec-

tions) and _'ar greater than what is possible by aeration or oxygenation without an

ozonator. Economically, the ozone treatment is not expected to be competitive

with chlorination unless extremely large quantities are routinely treated, and

of course is never competitive with aeration. Ozone treatment has a major dis-

advantage relattce to aeration in terms of toxicity and corrosiveness. This

problem is probably no worse than in the case of chlorination, however, and in

terms of environmental hazards the ozonation _)rocess has sozr, e advantages

relative to chlorination. Both ozonatton and chlorination are routinely used for

large scale water treatment in various parts of the world.

One lesson indicated very strongly by our e.xperimevts with ozone, as with

all of our experiments, is the need to keep ftL_l and oxid1:_er wastes separate until

after initial treatment. Even though diluted fuel and oxidizer may be safely added

to the same holding pond (see also Appendix B), to do so seriously impedes the

fuel destruction rates obtained by any of the oxidation processes that were studied.

e e

7. Evans, F.L., loc. cir.
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2.6 CHLORINA TION

2.0.1 Introduction

The gaseous chlorine method for destroying hydr_-'-Ine fuels in dilute

aqueous solutions has been used to a limited extp:',c at Johnson Space Center,

and possibly at other sites. It is quite s_r,_llar in operation to the oxygenation

method described in Section 2.4. Chlorination is in widespread use for the

sterilization of water sup_hes and the treatment of sewage.

The chief advantage of chlorine relative to oxygen or air in all these

applic,.tlons is the fact that, like ozone, it is a much more powerful oxidizer,

so that destruction of contaminants is much faster and more complete. The

chief disadvantages of chlorine are its toxicity and highly corrosive nature,

requiring safe handling procedures and special materials of construction.

Problems such as temperature or pressure rise are minimal, and solvable by

well known, everyday procedures.

CI 2 concentrations of 30 ppm or more induce coughing, and exposure for

30 minutes to 50 _ 10 ppm Cl 2 is dangerous. At 1000 ppm Cl 2 is rapidly fatal.

CI 2 attacks the membrane of the throat, luugs, and nose and causes serious

injury even at high dilutions. It combines with moisture to liberate nascent

0 2 and form HC1. Both these substances, if present in quantity, cause in-

flammation of the tissues. Because of its intensely irritating properties,

severe industrial exposure seldom occurs, as the workman is forced to leave

the area before he can be seriously affected. The established Threshold Limit

Value (TI:_ for airborne concentrations of chlorine is 1 ppm by volume, or

3 mg/m 3.

The solubility of C12 in water is about 7,300 rag/1 at 6S°F and 1 atmos-

phere. Below 49°F, CI 2 combines with water to form chlorine hydrate (CI 3.

8H20 ) , usually called chlorine ice. This hydrate will obstruct lines in the

feeding equipment. For this reason, feed or sealing water in contact with

CI 2 should be kept above that temperature.

Dechlorination of excess CI 2 _s performed by adding a reducing chemical,

passage through beds of activated carbon, or aeration. The reducing chemicals

include sodium bis_fite (NaHSO3), sodium sulfite(Na2SO3), sulfur dioxide
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(SO2), and sodium thiosuLfate("HYPO", Na2S203), e.g. :

NaHSO 3 _ C12 - H20 _ NaHSO 4 + 2 HCf.

Activated carbon sorbs Cl2 and is oxidized to CO 2, In aeration the Cl2 is

released to the atmosphere in highly diluted concentration.

2.6.2 Description of Experiments

All of the experiments in this series used aqueous solutions of MMH;

it is assumed that the results would be similar for N2H 4 or UDMH. The ap-

paratus configurations used are shown in Figures 2.6.1 and 2.6.2, and are

q_te similar to those used in the experiments described in preceding sections.

In Figure 2.6.1, the chlorine gas is Lntroduced as a predetermined rate

through a flowmeter into a medium porosity sparger in the 500 ml bubbler.

The small chlorine bubbles dissolve in the water and react with the MMH to

form N2, CO2, chlorides, and minor amounts of other end products. Liquid

samples are periodically withdrawn and immediately treated with sodium

thiosulfate solutions to stop the chlorine reaction, and analyzed for residual

MM2-I. Temperature, pH, and D.O. measurements are obtained as required.

In Figure 2.6.2, similar apparatus is used except that the amount of

solution treated in each tank is nearly fifty times as great - five gallons in each

ten'gallon aquarium. Additional agitation beyond that provided by the three

spargers resulted from laboratory stirrers used to help distribute CI 2

throughout each vessel. Liquid samples were periodically analyzed, and temp-

erature, pH, and D.O. measured, as with the smaUer experiments.

The residual CI 2 was not checked during the course of this work. The

CI 2 build up at the end of the run was probably at the several thousand ppm

level. Reference should be made to "Standard Methods for Examination of

Water and Waste Wa=er", a publication of the American Public Health Association,

for' methods of analysis for free and/or combined chlorine.

Twelve test runs ;_ere made. That.number was safficient to provide a

familiarity with the important operating parameters and to assure oursel .s of

the feasibility of a system based on chlorination. Further optimization of the

parameters in the small pilot size facility _vo_d be of value prior to design of

a full scale _acility, an:l would minimize the uncertainties that might arise.
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2.6.3 Results

Results of the twelve chlorination tests axe presented in Table 2.6.1.

The reactions proceeded quite rapidly in all cases, due in part to the good

solubility of Cl 2 in water. There was little or no CI 2 starvation during the

bubbling period. Complete destruction of M_tH occurred within 5 - 15 minutes

or less on all runs containing from 185 to 4500 ppm MMH. Reaction of MMH

with C12 probably occurs as fast as the CI 2 is introduced into the vessel.

Solutions containing less than 1000 ppm MMH in the presence of a Cu ++

catalyst were completely decomposed in less than five minutes in Runs 30,

31, and 32, even though Run 32 contained 2000 ppm N20 4. Solutions containing

3800 ppm MMH plus Cu "_"catalyst (Runs 33 and 34) and 4500 ppm MMH but with-

out catzlyst (Run 35) were completely destroyed in less than fifteen minutes

(see Figure 2.6.3).

In Runs 39 and 40 (Figures 2.6.3 and 2.6.4) the initial pH was adjusted to

about 10. The pH dropped to 3 or lower on C12 addition. A pH adjustment

w_.s deemed unnecessary- in CI 2 runs since the reaction rate is rapid without

it. Furthermore, the alkaline material will cause an unnecessary consump-

tion of C12, thereby adding to the operating cost. Run 43 _F!gure 2.6.5),

containing the highest MMH concentration, 7500 ppm, showed a very rapid

reaction rate, possibly exhibiting the effect of concentration on reaction rate.

Comparing the reaction rates in the two large volume runs (46 and 47,

• Cu ++Figure 2.6 6_ shows that the presence of a catalyst increased the reaction

rate• However, due to the decreased CI2 feed rate per unit volume (about I/6

of the earlier runs}, R l and t½ values were an order of magnitude higher than

in the 400 ml runs. Complete decomposition also required 5-10 times as

much time.

Note the steeper slopes in Runs "_"and 34, containing a catalyst, than in

Run 25 without a cataly,st. The R I ," aes further corroborate the reaction

rates. In Figure 2.6.5, curve 43 is steeper with a higher MMH concentration

than cur_'e42. The temperature rise fforan unexplaine.lreason) is higher in

Run 42 tb.anin 43, although the MMH concentration is higher in the latterat

the same Cl feed rates.
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2.6.4 Cemparison of Reaction Rates

Figure 2.6.7 allows compari,con of the R I values obtained using all of the

various treatment methods that have been discussed in this and the preceding

sections. For the purpose of this comparison, tests in which there were obvious

problems, such as the presence of N204, were excluded. The aeration and

oz,mation runs in which N2H 4 solutions were treated were also excluded - only

MM'H tests were used for the sake of this comparison.

The results show that 02/03 with a catalyst, and chlorine with or without

catalyst, are generally much faster than the air or oxygen methods, or ozona-

tion without a catalyst. Of the three fastest methods, chlorine with a catalyst

seems to be clearly superior to the others, although more extensive testing would

be required before rankings could be established with any degree of certainty.

2.6.5 Economic Considerations

The stoichiometric reacticn of chlorine with MMH is:

CH3NHNH 2 * 2CI 2 _-H20_ CH3OH _-4HCf + N 2

Since the molecular weights of MMH and Clo are 46 .-md71, respectively,
a,J

the amount of chlorine required to react with one pound of MMH is

= 3. I pounds
46

Similar calculations were made for three chemicals thatcan be used as

chlorine sources, that would not require gaseous storage and handling. The

results are shown in the following table_

CHLORINE CO.MPr#UND

Sodium Hypochlorite

Chlorinated Lime

CaJcium Hypocklorite (hth)

Gaseous Chlorine

AVAILABLE

CHLORINE

10q

25_

65q.

100q.

QUANTITY
REQ'D, LBS

PER LB MMH
L

32.20

IS.70

6.67

,2.1
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Economic comparisons can only be made on the basis of comparative costs of

the four chemicals, comparative capital costs, and amounts involved. Further

comparisons of the use of gaseous chlorine versus sodimn hypochlorite and

ozonation were presented in Section 2.5.5, whcre itwas shown that sodium

hypochlorite is probably economically advantageous when the amounts to be

treated are small, and ozonation becomes advantageous at the other end of the

spectrum.

2.6.6 Conclusions

(i} The reaction of CI2 with MMll is rapid and complete. Complete des-

truction of MMH occurred within fifteenminutes in tests containing up to 7500

ppm MMH with CI 2 feed rates of about 3200 rag/minute/liter,

(2) The rate of reaction of CI o with MMH is roughly proportiou=l to the
m

flow rate, per unit volume of reaction vessel, of the Clo.

(3) The temperature rise during reaction was barely perceptable at MMH

concentrations below 1000 ppm; at higher MM2t concentrations, the temperature

rise exceded 15°C. Provision for temperature sensing in an operating facility

is an excellent means for controlling the C12 feed rate into the reactor tank.

(4) The reaction rate in runs containing a Cu "_" catalyst was higher than

in runs without a catalyst.

(5) Low pH has a hindering effect on the reaction rate of CIo with M_LH,

'although this effect is not nearly as pronounced as ,,'ith air or O o.

2.6. _ Description of an Operational Chlorination System

Itis envisioned that a working system for treating 250 pounds of waste

MMII would be similar to that shown in Figure 2.6.8. This system would

comprise (i)a lined 5-10,000 gallon reactor tank, {2_a CI2 metering device,

t3)an automatic Cl2 sensing device with a shut off solenoid valve, {4)._.temp-

erature operated CI,_ shut off device, (51 sequential timers, (6_ a small gas

scrubber and pressure vent, and (7) the required liquid pumps, pressure control

valves, piping and appurtenances to conform to established design guidelines

and specifications. The closed tank feature would allow location and operation

in proxL"ni,'y to other buildings rather than at a remote site.
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Figure 2.6.7 Schematic o,¢ Reactor for M.MH Destruction.
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Diluted MMH solutions are _ roped into the reaction tank. CI 2 gas is

introduced through the diffusers at a predetermined rate until a slight excess

is sensed by the C12 sensing instrument. A liquid recirculati_ pump provides

agitation when required. A demister removes entrainment. Exit or vent

g_ses are conducted to a scrubber. Treated solutionS, after completion of

reaction, are analyzed and discharged to a sewer. A sequential controller can

be added to automate the operation if desired.

Use of a large excess of CI 2 would not increase the rate of reaction,

which is very rapid with or without a copper catalyst. A convenient rate of

C12 addition can be used to contt'ol the speed of the chlorination operation.

Identification analyses with a gas chromatograph indicate that treatment

of MMH with C12 produces small amounts of chlot_inated end products, such

as CH3CI, CH2CI 2, etc., which are undesirable species. An ideal process to

treat MMH wastes is one which will either not produce the undesirable species

or change them to a harmless form by a second simple step. Furthermore,

C12 itself is a highly toxic material and must be converted to a less toxic sub-

stance which can be disposed of easily. Small addition of sodium triosulfate

will instantly convert residual C12 to non-toxic substances (salt and sulfur),

If necessary, bloassays could be conducted to evaluate the toxicity of

the treated MMH effluent to determine or identify effects of the chemical

variables, Bioassays are used to Judge compliance with _.ater quality standards

established by water pollution control authorities.
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t
2.7 OTHER CHEMICAL TREATMENTS

2.7. I Introduction

In addition to the gaseous treatments described in the preceding sections,

a number of other chemicals could also be used to treat the hydrazine fuels.

These chemicals include calcium hypochlorite (Sold under the trade name

'_th" for swimming pool We), sodium hypochlorite (household bleach), hydrogen

peroxide, hydrochloric acid, sulfuric acid, hydroxyacetic acid, and others.

These chemicals could be added to holding ponds containing dilute fuel mixtures,

used in special treatment ta_s, or used directly in the scrubbing liquor of vapor

scrubbers. In addittonb nitrogen tetro_de has been used in concentrated form

for direct reaction with concentrated hydrazine fuels for the purpose of waste

disposal.

The catalyzed (normally With copper sttlfate catalyst) hydrogen peroxide

reaction is currently being used _or hydr_zine &_sposal by several of the aero-

space organizations contacted during Phase I of our study. Two of them precede

the hydrogen peroxide reaction with a caustic (sodium hydroxide) treatment,

and one organization uses caustic alone for hydrazines.

Nitrogen tetroxide is also commonly used, especially in the sense of

dilute solutions of both fuel and oxidize1, being added to the same holding ponds.

We studied this case fairly extensively and found that, while it is quite safe, it

is also rzther ineffectual, the rate of reaction being very slow in dilute solution.

A chemically identical treatment method wo_d involve the use of nitric acid

directly, These methods have the added disadvantage of nitric oxide formation

during dilution of the N204 or. HNO 3.

Although calcium hypochlorite has been recommended by the hydrazine

fuel manufacturers for disposal, the forn_ation of insoluble calcium deposits

is a problem, as is the fact that the material is a solid and hence handling

is complicated. In gefleral, operational arid mah_tena_ce problems would see_

to be higher with this material than with many others that have been studied.

Th_ D_tcon Company of M[neoia, Yew York, has s_gested that MMH in

particular could be rdduced to ammonia and water" using sulfuric acid, f'ather

than oxidized as in ntost treatment processes, and flarther that equipment of

their" mafL_dacture could be used for this purpose,
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Another interesting item of proprietary equipment that would be applicable

to the treatment of hydrazine fuels is Engelhard's "Chlorop_c", an electrolytic

sodium hypochlorite generator. The sodium hypochlortte solution is produced

directly from ocean water or brine solution, hence reducing the hazards and

inconvenience of handling and storing quantities of chemical, and the possibility

of over-chlorination with attendant releases of chlorine gas, Thio device Is

marketed as a modular system in a wide range of capacities, and similar

units are currently available for residential swimming pools, It might be

necessary to keep the fuel solutions away from the electrolysis cell itself,

however, to avoid formation of other ha_rnful products, as we experienced

difficulties along these lines in the laboratory tests described later in this

section.

2.7, 2 Chemical Description

The following equations show reactions in dilute solution, for N2H 4 treat-

ment by several of the most common chemicals:

-H-
Cu

1_ N2H4 + 2H202 Ca_t N2 + 4i.i20

In basic solution N2H 4 acts as a reducing agent:

Possible 1/2 reactions: _ NH3, H2 , H20

NH 3, N3, H20

2. N2H 4+Ca(CIO)2 _ N 2 +H20+2HCI+CaO

In solution CaO reacts: CaO + 2HCf _ Ca Cl 2 + H20

CaO + H20 _ Ca(OH) 2

3. N2H 4 + 2NaOCI _ N 2 + 2H20 + 2NaC1
+

4. N2H 4+HC1 _ N2H 5 +el"

N2, H +
+ ÷

N 2, NH 4, H
+ +

NH 3, NH 4, H

5. N2H 4 + N204_ N 2 + 2NO + 2H20

6. NaOH is used primarily to adjust the pH of the soiution, a_d

does not t_eact with the hydrazine to any sigi_lficant extenL
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The comparable reactions for MMI-I are:

Cu ++

CH3N2H 3 + 5H202 CatalvJt N2 + 8H20 + CO 2

2CH3N2H 3 + 5Ca(C10_ _ 2N 2 + 6H20 + 2CO 2 + 5CaC12

CH3N2H 3 + 5NaOCl _ N 2 + 3H20 + 5NaCI + CO 2

' 3

CH3N2H 3 + 2N204"--'_ _N 2 + 3NO + CO 2 + 3H20

The same reagents react with UDlVI_I as follows. _

(CH3) 2 N2H $ + 8H202 _ N 2 + 12I-I20 + 2CO 2

(CH3) 2 N2H 2 + 4Ca(CiO) 2 _ N2 + 4H20 + 2CO 2

.

2. + 4CaCl 2

3, (CH3) 2 N2H 2 -_ 8NaOC1-----_ N 2 + 4H20 + 2CO 2 + 8NaC1

4. (CH3) 2 N2H 2 + 3N204----_ 2N 2 + 4NO + 4H20 + 2CO 2

These equations are idealized for complete reaction. As in most chemical

reactions, trace amounts of possible products formed are not shown.

The normal procedure for treatment is as follows. Small quantities of

fuel collected in a stunp, tank or pond are highly diluted with H20 (at least

1:100). The pH is adjusted and catalyst added, if required. The reagent is

then applied slowly, to allow heat dissipation from the reaction, and in slight

excess. The t_eated solution iS checked for pH and p_.esenee of amines prior

to ultimate disposal, o_* simply allowed to evaporate.

Heat is generated in each of the reactions so that controlled addition of

reagent is necessary, Some means is required for insuring complete decom-

position of propellant during treatment, without excessive addition of reagent,

2.7,3 Economic Conslderatlg_s

The relative costs of the various chemical treatments were compared

using prevailing prices for ton lots of the chemicals at the time tl_ts portion of

the study was _)erfc-med (e.'u-ly 19_/4). The prices per pound of N2H 4 treated

(assuming stoich _,r_tric aa_ounts of the reagents) for several of the chemicals

of i_terest were ..,_,nd to be:
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HCI: $0.24

H2O2. $1.15
NaOCh $1.49

Ca(ClO)2 $I. 58

The prices for treating MMH and UDMH would be correspondingly higher.

Hydroxyacetlc was found to be excessively expensive ($3.75 per 1_ for

70% concentration. )

2.7.4 Environmental ,Considerations

The only standards we found regarding aUowable hydrazine levels in water

or soil are the recommendations of the TRW report referred to in Section 2.1.

This study was funded by EPA and probably represents an important part of the

basis for future EPA standardS. It also recommends provisional limits in air

and water for several of the other constituents tha_ might appear in neutral-

ization pond effluents, as listed in Table 2.7. i.

These recommended provisional limits are obviously very low, and in fact

the limits for all of the neutralization reagents, as well as reaction products

such as slaked lime and quicklime, are actually much lower than the limit

for hydrazine itself. We must therefore conclude that if any of these reagents

is to be usedt quantities must be very carefully controlled atxi concentrations

continuously monitored to avoid excess reagent addition, Since these reagents

are all water soluble, excess addition will result in the reagent appearing in any

pond effluent that might exist.

Even more severe than the restriction on neutralization reagents in the

effluent is the restriction on ammonium hydi-o_de, o1' ammonia gas dissolved

in water, if this restriction is incorporated l_ future liquid waste discharge

standards, it would be a strotz_ factor, against the selection of those reagents

that result in the forffiatiofl of ammonia gas and ammonitt_ radicals,

The liquid effiueiit.s from these systems could contain ions of ._a ++, Na +,

CI'_ NO 2, or NO 3. S_lection of a grouhd waste disposal site shouid be based

so that the discharged liquid waste infilt#ates and percolates into the ground

surface whet_e no possibility of impairfnant e_ists. Disposal of wastes should

not be near fresh _ater aquifers, wells, or an_. other usable water soux'ces,

-w
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TABLE 2.7.1

RECOMMENDED PROVISIONAL LIMITS FOR

POSSIBLE NEUTRALIZATION POND E FFLUENT CONSTITUENTS 1

Contaminant in Water
and soil

Calcium hydroxide
(slaked lime)

Calcium oxide

(quicklime)

Ammonium hydrox-
ide (ammonia water)

Hydrochloric acid

Hydrogen peroxi, le

Mixed acid

Nitric acid

Sulfuric acid

Sodium hypochlorite-
NaOC1

Calcit_ hypocl_lorite-

Ca(CIO) 2

Hydrazine-N2H 4

Provisional Limit

0.25 ppm

0.25 ppm

0.01 ppm

0.35 ppm

0.07 ppm"

0.05 to 0.25 ppm

0.25

0.05 ppm

0.10 ppm

0. 125 ppm

1, 0 ppm

m

Basis for Recommendation

Stokinger and Woodward
Method

Stoklnger and Wookward
Method

Stoklnger and Woodward
Method

Stokinger and Woodward
Method

Stokinger and Woodward
Method

Stokinger and Woodward
Method

Stokinger and Woodward
Method

Stokinger and Woodward
Method

Stoklnger and Woodward
Method

StoI,i_er and Woodward
Methc_i

Quantity will rapidly
oxidize to near-zero con-
ce ntration

i

mm m

I. ottinger, R.S. ; B,umehthai, j. L. ; Dai Porto, D, F. ; Gruber, G. I, ; Santy,
M,J. ; and Shih, C,C,: "Recomfnended Methods of Reduction, Neutralization,
R_covery or Disposal of Hazardous WaSte. " lt_port No, EPA-670/2-73-053-1

(August 1973). NTIS PB-224 591, Volume XH, pages 62, 105, 133, 329.
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Because of the overall controllability of neutralization ponds - the fact

that, with adequate capacity, unplanned releases need not occur, and effluent

discharge can await "satisfactory" conditions withi_ the pond - it is our con-

clusion that neutralization ponds using any of these reagents are enVironmentaLly

acceptable as means of destroying hydrazine fuels, This acceptability is, of

course, dependent on the proViSion of adequate equipment and procedures for

monitoring and controlling the composition of the pond. It might also be nec-

esdary in some cases to proVide a means of secondary dilution, such as a

separate discharge pond.

Acceptability does not imply practicality, however, and we believe that

the practicality of these neutralization systems is very dependent on the severity

of future restrictions on ground water discharges. As long as reasonable a-

mourits of dissolved hypochlorites, and slaked lime and quicklime, are allowed,

the "swimming pool treatments," NaOCL and (CaCIO) 2, are practical, although

somewhat expensive. If dissolved ammonia is also allowed in small quantities,

the H202 system would also be quite practical, _nd if very dilute HCf can also

be discharged, the low chemical cost of this reagent could make it quite at-

tractive.

2, _. 5 P_oducts of Rcaction- ChemicaLAnalyses

In our study, we were particularly concerned with MMH, sizlce it is to

be the fuel for the Space Shuttle Orbiter.

in spite of the fact that MMH has been used as a rocket fuel for many

years, we could find no reports treating quantitatively the products of reactt(_n

o_ MMi.I with oxidizing or _ducing agents used for disposal of M_tH liquid

wasteS_ or in _ vapor scrubbers. This information is particuiary impor-

tant in view of the fact that oxidation of _IH could result in the formation of

hydrogen cyanide or other toxic products.

Because of the importance of loarning precisely what the products are

for various agentss a major effort was devoted to gas-liquid chromatograph

(GLC) studies of the products of t.eactior, of _IMH with l_aOCl (sodttun

hypoch|orite), Ca(OCI)2, H202 with cop_[" (Cu ++) catalyst, and other oxidizing

agents. The results of these studies are presented in Table 2.7, 2, The

¢,

• . . ,,,., , i _ '
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investigations were lintited because of the extremely time-consuming nature of

these tests.

Our conclusions from these tests are as follows:

1. Use of Ca(OCl) 2 as an oxidizing agent for MMH has serious disadvantages:

a. Upon reaction with MMH a serious exotherm may occur.

b. This exotherm apparently causes the formation of chlorinated hy-

drocarbo_,s all of which are considered somewhat toxic.

c. A heavy precipitate fob'ms.

d. ,_,ny excess calcitml hypoehtorite is also toxic to biota in the re-

ceiving waters.

e. Practical disadvantages are also associated with the large quan-

tities of this ager, t that are required -- approximately 6.7 pounds

per pound of MMH treated. Handling and storage are both pro-

blems, as well as the high chemical cost, that would be signtfican_

in any but the o,mallest of treatment systems.

2. Use of sodium hypochlorite ,'ms almost none of these disadvantages anti

at the same time produces only the relatively innocuous CH3OH.

3, Hydrogen _eroxide without a catalyst is essentially ineffective as an

oxidizing agent for MMH, but does produce CH3OH over a long period

of time.

4. Electrolytic ,'hlorination of MMH apparently produces a toyAc gas.

5. Hydrogen peroyAde with a Cu ++ catalyst produces CH3OH, but when a

large excess of H202 is present a toxic product is formed.

2.7.6 Neutr_)ization of Dilute Fue t U.si_ Vapor _aSe Nitro_n_Tetroxide

One of the postibtitties that we investigated involved the venting of

N204 v_pors directly to a n_arby disposal pond containing diluted fuel, We

were interested in the safety arid effectiveness of this method for those cases

where it might be practical to locate a fuel disposal pond near a vent for oxi-

di_er vapot_.

A one liter _olutioti of hydraztae, NH2NH 2 (5%),was prepared. The tem-

pe_ture was 27°C and the pH was 11.1_ Fifty mL of N204 was distilled into

this soltttion throngh a sp_rger over a three hour period. The tempe_,atu_e

, , s, _
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rose to 32 ° and a final pH of 7.7 was obtained, as expected since the hydrazine

is in excess (mole ratio hydrazine to N20 4 is i. 7 to I).

seen over the receiving solution.

A similar experiment using MMH was conducted. A 570 MMH solution

was prepared (pH I0.5, temp. 28°C). 50 mls. of N204 were a_led over a two

hoar period and the temperature t'ose to 39°C while the pH declit_ed to 7.2.

The mole ratio of MMH to N204 in this case is 1.1 to 1. Again, no red cloud

was observed,

No red NO 2 vapor was

It is, concluded that disposal of vaporous N20 4 into dilute h_lrazine solu-

tions seems to be a Safe and potentially effective method of disposing of both

these hyperzols. The experiments were not extensive enough _o allow a thorough

evaluation of the effectiveness of destruction of the two constituents.
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2.8 GAMMA IRRADIATION

2.8.1 Introduction

In the irradiation of water solutions, destructive oxidation of organic/

inorganic molecules takes place by direct energy absorption which ruptures

:he bonds in the molecules, followed by 0 2 combining with the free radicals

formed. Much of the oxidation occurs due to the indirect attack by the hydroxyl

radical (OH-) resulting from radtolysis of water as well as from the hydrated

electron (e_q). The hydrated electron is a highly reactive negative ion that

appears to be a more powerful reducing agent than the hydrogen atom. The

e:q_, particle is considered to be the dominant species in irradiated water and1
is utilized to explain many of the radiolytic processes.

The nature of the reaction of the hydrated electron is given by:

eaq +X ----_" Y

For example, in the case of.N2H 4.

eaq + N2H 4 _ NH2 + NH

There are several empirical values used to assess the efficiency o, a

radiation-initiated reaction, including the G value and the absorbed radiation

dose (Rads) required to achieve the destruction of a species or combination

of organic/inorganic species. The G value is defined as the number of mol-

ecules of chemical compounds which are formed, changed, or disappear, or

the number of oxidation reactions which c,2cttr, as a result of the absorption

of 100 electron volts of energy. A Rad is an energy density o£ 100 ergs per

gram - approximately the absorbed dose delivered to material exposed to one

roent eg__.of medium-voltage x-radiation.

Although work has l:een done for several years, zt Florida Institute of

Technology and elsewhere, on the use of gamma irradiation for the ._reatment

of sewage and industrial v,astes, we are not aware of any ap_,tications of gamma

irradiation for the destruction of hypergolic propellants prior tc, our laboratory

experiments.

lo

m

Hart, E.J._: Record chem. Prog., Vol. 28, p. 25 (1967_.
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2.8.2 Description of Experiments

Diluted samples of MMH and N2H 4 were poured into 4 oz. glass bottles,

capped and exposed to a Co 60 gamma source for the periods required for dosages

of 104 , I05 , or 106 reds. These experiments were carried out in Florida

Institute of Technology's Cobalt - 60 facility, operated by the University Center

for Pollution Research. The gamma rays from the 27,000 C_u-ie source are

of the electromagnetic type which are more suitable for treatment of liquids

because of the lack of residual radioactivity in the irradiated material.

The exposed samples and controls were analyzed for residual concentra-

tions of undecomposed hydrazine fuels using the p-DAB procedure, as la the

experiments described in preceding sections. A Bausch and Lomb Spectronie-

20 spectrophotom_ter was also utilized in determining the hydraztne concen-

t_'ations.

As shown in Table 2.8.1, irradiation of aqueous so:utions of _IMH and

N2H 4 results in partial #estructioa of the fuel. In Test 1, N2H 4 concentration

was reduced by more than 8% in approximately 1 1/4 hours from the 75,000

ppm level (7.5%). In Tests 3 and 6 the MMI-I concentration was reduced ap-

proximately 17% in 7 1/2 minutes and approximately 26% in 1 1/4 hours. The

results of Test 6 are plotted in Figure 2.8. !, in terms of residual MlV[I-I con-

centration as a function of total dosage.

It was noticed that under the test conditions (screw-capped bottle) there

was a build up of pressure in the bottle due to gas generation, In addition to

the expected N 2 gas an odor of NO and the brown fumes of NO 2 were noticed

on uncapping the bottle. These NO x pre_ent a secondary disposal problem.

A possible synergistic effect by bubbling O2 or 03 during irradiation

was not explored due to time limitation. It is believed t!at destruction of

._L_Itt would be enhanced due to _trong oxidizing conditions.

i



105

Test

3

6

TABLE 2.8. 1

GAMMA IRRADIATION EXPERIMEI_TAL RESULTS

Dose tn Time N,,H 4 MMH
KR Irradiated p_m ppm

',_oReduction
from co.tro'-

O(Control) 0 74,500 8.72
1,000 74.5 rain. 68,000

0 4 12.1
I0 45 sec. 10.7 ii.5
105 7.5 mln. 9.9 18.2

0 52,5000-

i oo,ooo7.5 min. 43,400 17.3

10- 74.5 min. 38,800 26.1

L o •
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2, S.3 Economic Considerations

Past experience at Palmd_le* indicated direct operating costs of under

$1.00 per 1,000 gallons of waste water treated, including a filtration system.

The initial construction cost of a radiation facility is approximately twice the

cost of a conventional water treatment facility. Operating costs for a hypergol

treatment facility may be anticipated to be higher due to the larger dosages

required for chemical compound destruction, with concomitant increased .....

exposure time and pump recirculation costs. Our preliminary estimate is that

operating costs would be less than five times the above cost ,- $5. O0 per 1,000

gallons treated - considerably less than the chemical costs for a sodium hypo-

chlorite, calcium hypochlorite, or hydrogen peroxide treatment system,

2.8,4 Conclusions

Results of this work indicate that the destruction of N2H 4 or MMH by

gamma radiation from Co 60 is possible. More decomposition occurred than

was anticipated for hydrazine type compounds at the relatively small dosages

used.

Effectiveness of this method was not conclusively demonstrated by this

limited ser_es of experiments, however. Additional laboratory and prototype

testing would have to be performed if an operating system were to be designed.

The problem of NO x formation could be a formidable one.

* This was a 16,000 curie Co 60 facility treating approximately 10,000 gallons

daily, for disinfection pttrpoSes_ located at Palmdale, Florida.

L ....... - ........... _ .... : , . j
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2.9 INCINERATIGN

2.9.1 Introduction

Incineration is a controlled combustion process to convert waste pro-

pellant to a less toxic, less bulky, less noxious or more easily disposable

material, The principal undesirable incIneration products from an environ-

mental viewpoint are usually NO x and CO. Occasionally, NH 3 or hydrocarbons

or soot are released when operating under non-optimum conditions. Un-

desirable compounds formed during incineration may require a secondary

treatment, such as scrubbing, to lower their concentration to acceptable

levels prior to atmospheric release. Alternatively, they can generally be

avoided, or at least minimized, by careful incinerator design. The ideal

l_'.oducts of combustion - CO 2, H20, and N 2 - are harmless and can be re-

leased directly to the atmosphere.

Two of the organizations we _ontacted at the beginning of this study are

currently operating incinerators for the disposal of aqueous solutions of hydra-

zincs (and, in one partic_ar instance, a solution of MMH in isopropyl alcohol).

One incinerator uses natural gas as primary fuel and maintains a flame temp-

erature of 1900 F; the other uses diesel fuel and maintains 2700 F or higher

(3200 F was also mentioned).

In addition, the Marquardt Company of Van Nuys, California, has de-

veloped and is marketing a more specialized incinerator capable of disposing

of raw liquid hydrazine, A research program carried out under Air Force

sponsorship demonstrated the effectiveness of this incinerator in disposing of

the hydrazine cleanly and efficiently, with acceptably low formation of oxides

of nitrogen and other undesirable products.

The TRW study 1 recommended controlled incineration for the disposal

of hydraztne, with effluent scrubbing to remove ammonia that inight be among

the products of combustion° The manufacturers recommend open pit burning

I. Ottlnger, R, S. ; Bltu_enthal, j, L. ; Dal Porto, D. F. ; Gruber, G. I, ;
Santy, M.J, ;aed Shill, C,C. : "Recofnmended Methods of Reductton_ Neutral-
ization, Recovery or Disposal of Hazardous Waste". Report No, EPA-670/

2-73-053-1 (August 1973). NTIS PB-224 591, Volume 1, page 215.
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for disposal of large quantities of hydrazine. The TRW study labeled this latter

method "generally acceptable", but warned of excessive NO x generation. 9

AqueoUs solutions containing less than 40% N2H 4 cannot be ignited in an open

pit.

Open pit burning is still practiced by some users of hydrazines_ but not

to such an extent as several years ago.

Important criteria for an adequate inclneratinr_ system include the

following:

1. The effluent should be inconspicuous and safe

2. The system should not be prohibitively expensive to operate and

maintain,

3. It must meet air pollution standards.

Gas sampling techniques and analysis must be adequate to provide mean-

ingful data. Two key problems include the need for representative samples,

and for preserving the integrity of samples until the analysis can be performed.

The variables which have the greatest effect on completion of the

oxidation of the propellant waste are:

1, combustibility,

2. reaction temperature,

3. residence time in the incinerator, and

4. gas turbulence in the reaction zone.

Hydrazine, UDMH, and MMH have very broad flammability limits, With

proper feed rates and the use of auxiliary fuels combustibility is l, eadily con-

trollable. Temperature can be controlled over a wide range by varying the

air-fuel ratio, secondary air addition_ tWo-stage combustion or water injection.

Rates of oxidation reactions are increased rapidly by higher temperatures. A

design l_ange of 2400°F to 3000°F or higher may be specified depending upon

the waste p_-opellaflt being disposed.

Stdflcient resistance time must be provided to allow i_e wa.-te fuel to be

completely oxidized, _'rom 0. i to i second or more may be required, The

evaluation of this time factor can odiy be made by tests of individual incinerators

or froni mantdactu_ers' data.

2. ibid., Volume XII, page 330. ........
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The degree of turbulence in the reaction zone significantly affects the

incinerator performance. Intimate mL_:ing of the air and waste propellant

gases is required for completeness of combustion,

NO Is a pollutant common to incineration processes which utilize air, NO

formation results from 02 and N 2 reacting at elevated temperature. Figure

2.9, 1 presents graphically the thermodynamic equilibrium concentr._tion of NO

as a function of percent excess air at various reaction temperatures, for the

combustion of hydrocarbons. The incineration of hydrazine fuels might yield

higher values than shown since they are high-percentage nitrogen-containing

compounds.

2.9.2 Commercially Ayailable incinerators

Of the many incinerators now on the marketj at least a few seem suit-

able for hydrazine fuel disposal. T_vo have seen considerable use for this

purpose already. One, designed by Thermal Research and Engineering Corp.,

of Conshohocken, Pa., has been in use at Cape Canaveral for over a decade and

still seems to be giving very. satisfactory performance_ it has been used for

aqueous solutions of hydrazines and N204, and fo_ hydrocarbon fuels, Thermal

has not designed any other incinerators for this purpose since then, but is

still active in burner design and emissions control. Another incinerator,

build by Hirt Combustion Engineers of Montebelloj California, in 1968, is

still in active use for disposing of aqueous solutions containing hydrazines

and has also been used for hydrocarbon fuels and exhaust gas. In addition to

these, the Marquardt Company of Van Nuys, California, markets commercial

fume incinerators and liquid incinerators which are an outgrowth of their work

in aerospace propulsion, and have run tests on disposal of N2H 4, UDM_-I and

N204 In their Sudden Expansion (SUE) incinerator.
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2.9.3 Thermochemical Description

The stoichiometric combustion equations for hydrazine, MMH, and

UDMH in air are, respectively,

N2H 4+(O 2÷3.76N2)_ 2H20+4.76N 2

(CH3) N2H 3 + 2.5(0 2 + 3. 76 N2) _ Co 2 + 3H20 ÷ 10.3 N 2

(CH3) 2 N2H 2 + 4(0 2 + 3.76 N2) _ 2CO 2 + 4H20 + 16.04 N 2

In addition, the stotchiometric combustion equations for the auxiliary fuels

methane (natural gas), propane, and butane, are respectively,

CH 4 + 2(0 2 + 3.76N2) _ CO 2 + 2H20 + 7.52 N 2

C3H 8 + 5(0 2 + 3.76 N2) _ 3CO 2 + 4H20 + 18.8 N 2

C4H10 ÷ 6.5(02 ÷ 3.76 N2) _ 4c02 + 5H20.24.4 N 2

In a typical incineration process, one of the hydrazine fuels (or a mL_:-

ture of two of them, such as Aerozine 50) is burned in air, in conjunction

with natural gas (which is primarily metl_ane) or liquffied petroleum gas

(propane or butane) as an auxiliary fuel used for preheating, start-up, and

usually to maintain combustion in case of a somewhat irregular Supply of

the waste fuel.

A starting point for the chemical description of the incineration of

hydrazine fuels would therefore consist in simply adding the appropriate

stoichiometric equations above. In actual practice, however, the complete

description of the reactions is consideralby complicated by the following

factors:

a. Non-,stoichiometric mi_ures and incomplete combustion result

in the formation of partial p_oducts, such as carbon monoxide

and ammonia_ and might allow discharge of some raw fuel.

b. High combustion temperatures result in the dissociation o5 water

and CO 2, and in the formation of oxides of nitrogen,

c, In some incinerators, the hydraziae fuels must be supplied as

aqueous solutions, hence tntroducitig additio_l H20 in the equations

and altering the equilibrium composition of the products,

t
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Hence a complete combustion description must include the possibility

of formation of a number of trace products, including H2, 02, H, O, OH, CO,

NO, NO 2, N20, hydrocarbons (HC), NH S, amines (RNH 2) and unburned fuel.

Emission of unburned fuels can be minimized by combustioll chamber

design (good mixing, high turbulence, long dwell times)j by lean mixtures

or secondary air injection, and by high combustion temperatures. Unfortu-

nately: high combustion temperatures result in the formation of oxides of

nitrogen, as shown in Figure 2,9.1. Carbon monoxide formation can be re-

duced by use of excess air (lean miXtures) but this can result in still greater

formation of oxides of nitrogen. Long combustion chamber residence times

also aggrav_,tte the oxides of r.itrogen problem,

The incinerator emissions problem is therefore quite similar to the

automotive emissions problem: most of the steps that result in "cleaner',

more complete combustion create additional problems in terms of the form-

ation of oxides of nitrogen. Of these, N20 is relatively harmless and NO 2

and N204 are not stable at elevated temperatures; NO, however, is poisonous,

and w ill oxidize in the atmosphere to form NO 2, the poisonous reddish-brown

gas that is such a major air pollution factor. Table 2.9. i presents additional

information on the various oxides of nitrogen,

The problem is not an impossible one, however, and considerable

progress has been made in vastly reducing both automotive and gas turbine

emissions through improved combustion chamber design. Thorough mixing

and turbulence seem to be beneficial from all points of view. Temperature

problems can be al_eviated by ensuring uniformity of temperature; that is,

by eliminating hot spots which serve no functional purpose, but which can be

responsible for a iarge fraction of the NO formation, Some control of resi-

dence time seems possible in gas turbine combustors (arid, presumably, lnetn-

erators_. NO formation is _ function of time as well as temperature_ if the

time that a typical gas particle spends at elevated temperature can be controlled

to th6 minimuzn value consistent with complete combustion, then NO emissions

can b_ minimized. Thot.ough inixing has the added _dvan_ge of shortening

the residence time needed to ensur_ eompiet_ combustion, by increasing the

probablli_ of early contact between air molecule and fuei molecule, in

an lncinetbator there is no need for a high exit temperaturej so that a water
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quench is a possible means of controlling dwell time. AILernatively, secon.-

daL'y air (air added downstream of the primary combuStion zone) might be

used to bring the temperature to a level too low Zor NO formation, but high

enough for some of the combustion t_eactions to go.to.completion,

The most extensive Study that has been performed ,_ _._¢!peration of

waste hydrazines is the Marqunrdt study performed for AFRPL. 3 This was

a combined theoretical and experimental study, based on the Marquardt "SUE"

(Sudden Expansion) incinei_ator. The theoretical portioti of the study consisted

of calculating the theoretical equilibrium compositions of the products of corn-.

bullion of various combinations of No H 4, UDMH, nat_tl'al gas, and air. These

eompuL_tlons were based on NASA Report SP-2T3, "Computer Program for

Calculation of Complex Chemical Equilibrium Compositions, Rocket Perfor-

mance, Incident and Reflected Sho_.ks, and Chapman--Jouguzt Detonat_.ons,"

by Sanford Gordon and Bonnie J. McBride (1971). The results, which of course

are not _estricted to any particular incinerator design, are presented in

Fi_,ures 2, 9.2 _hrough 2.9.5.

The e:_erimentai portion of the Marquardt program was based on these

equilibrium curves, the primary objective being to e._perimentally verify the

more desirable operating points identified by the theoretical results. Results

of the e._perimental progr:ml were generally satisfactory, giving fair

agl_eement with the theoretical predictions and good operating characteristics.

The final report stated that:

'_sing eitl_er UDMH or Nol-I4 as the primai'y fuel and natural gas aS an
ignition and sustaini_ _e'[, the SUE incinerator ignited easiiy_ burned

smoothly, destroyed the primary fuel to less than 2 ppm by weight and

produced hO x at well below the 165 ppm target limit,"

The burner used in this test program was an air cooled, 6 inch by 12

inch burner, as shown in Figures 2,9,6 afld 2.9.7. Fuel was injected at the

sttdde_ expansion plane and directed toward the centerltne of the burner,

Combustion bek_n at the sudden e_patision and continued downstream for a

dlStahce of about two chamber diameters, Waste _uel and natural gas nozzles

wet_ typicaJJy closed-end ttlbes with slots n_ar the tips, mounted on circular

i

3, i-lutson, Joel E. : '_l'oxic Waste Burner Evaluation," Final Report,
AF_PL Contract No. F 046iI-7_-0007, Hovember 1973. Marquardt Co,
Report No. s--i2"_'1.
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manifolds at the sudden expansion, although a central poppet nozzle for waste fuel

injection was also used in some runs, as shown in Figure 2.9.6. Secondary air

injection, to obtain complete combustion In the case of fuel-rlch primary com-

bustion, and water injection to quench the hot products of combustion and hence

minimize NO formation, were also used in some of the tests. Samples were

normally taken at the end of the reacti__tai! pipe, upstream of the scrubber,

M_tximum destruction rates were given as 138 gallons per hour for N2H 4,

I00 gallons per hour for UDMH. These rates were obtained with over-stoichio-

metric o.raeration, using secondary air injection and water injection to reduce the

levels of CO and H2 in the exhaust. Satisfactory propellant destruction was also

obtained at very lean ratios, with acceptable NO x levels_ but in this case destruc-

tion rates were very low. Because of the use of natural _as as an auxiliary fuel,

there need be no minimum flow rate of the waste propellant. Warm-up time for

the SUE unit (required to stabilize the flame, etc,) is five to ten minutes. The

test results, in terms of NO x measurements, are given in Figures 2.9.8 and

2.9.'9. It is seen +.hat NO x concentrations are generally considerably higher than

the theoretical predictions, especially in the case of over-stoichlometric oper-

ation.

As a practical matter, it would be desirable if the same incinerator could

be used for disposal of both liquid hydrazines and hydrazine vapors. Such a mod-

ification would probably requi:.-e a development and test program to establish its

effectiveness, Other developlnent work might also be beneficial, and Marquardt's

final contract report mentions that a desirable modification might be a longer re-

action tailpipe_ with a turbulator section, to more effectively reduce CO and CH
x

emissions when operating over-stoichiometric with secondary injection.

Other incinerators might also be developed that would be at least equally

effective, making use of recent advances in the State-of-the-art of combustor

design, particularly with regard to reducing the emission of trace species.

Large incinerators of the type used at Cape CanavernI Air Force Station

are also environmentally acceptable in terms of point-of-use emissions, on the

basis of data obtained from Pan American World Airways _nd other unpublished

data, The overall environtnental impact of these large," units might be Judged

unfavorable on the basis of their very high consumption of h}_drocarbon fuels,
8

however. In addition, their more complex ope_'attonal requir._ments, special

i,d
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siting requiren,ents, and long warm-up cycles all place them at a disadvantage.

Their chief advantage over smaller units is the ability to destroy aqueous sol-

utions - a requirement that can also be met very effectively by aeration, ozona-

tlon, chlorination, or other chemical treatments as described in the preceding

sectionS.

2, 9.4 Open Pit InclnCratio_v

An open pit incinerator consists of a rigid shell or lined pit of suitable

width and height with an open top. An array of closely spaced nozzles can be

used to provide high velocity air over the burning zone,

High burning rates, long residence time, and high flame temperature

are achieved. Smoke can be controlled but some particulate matter (soot)

and a visible plume of toxic gas (NO 2) are produced. Exit gases are released

directly to the atmosphere.

Mixture ratios and temperatures are not well controlled in this process,

and can vary substantially with both position and time, Formatiov .d partial

products and oxides of nitrogen is to be expected. The usual means of mini-

mizing these emissions do not seem applicable to open pit burning.

Although open pit incineration is an effective means of destroying hydra-

zines, the probability of excessive generation of oxides of nitrogen, and CO

in the case of the methyl-substituted hydrazines, render it environmentally

undesirable, in our view, Because of the number of other optionS available

and their over'all acceptability, we do not believe open pit tncinelators should

be considered in cases where new facilities are to be constructed,

2,,9, 5 hlc_(neratlon of Hydrazine. vapors

We know of only one orgar_iz_tion that has the capability of destroying

hydrazine vapors by incineration, and this organization's systems are used

primarily for products of combustion (or dissociation) rather than directly

for hydrazine.

These systems are used in conjunction with testing of small hydrazine

gas generators and APU's. Exhaust from the test cells is carried to small

rooftop incinerators - essentially 55 gallon drums with equipment panels at
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one end and e._haust deflectors at the other. Natural gas is fed through the

equipment panel, which also includes a squirrel cage blower and a spark plug.

The air and gas are mixed, and ignition is initiated by the spark plug. The

flame enters the drum through a central hole in the firebrick lining on the

end; the waste (exhaust) gas from the test cells is fed into the flame in the

central part of the drum by means of a downstream facing duct. The unit is

fired prior to the beginning of a test in the cell below it. These unite were

installed after hydrazine testing began, in order too eliminate a problem with

ammonia odors in the test buildings, and they have been quite successful.

In addition to the rooftop unit_ used at this installation, there also is a

large incinerator, originally manufactured by Hlrt Combustion Engineers, that

services the test f_tcllity. Deluge water from the cells is _rained to a sump

adjac_n: to this incinerator; when enough accumulates, the _cinerator is fired

and the contents of the sump injected into it. In addition, six-inch lines come

directly to the incinerator from t_vo of the test cells carrying exhaust gas from

engines r_tnaing in those two cells. Both liquid and vapor can be fed to this

incinerator simultaneously. Natur_.l gas and waste vapors are injected into

the main air stream through an array of nozzles, and the liquid is sprayed

into the flame region through a central nozzle. The sumD pump, which supplies

liquid to this cen_.ral nozzlet can d_'aw either from the sump, from a liquid-

vapor separator on the waste vapor lines, or from a small external tank that

can be used to dispose of contaminated liquid propellants directly, In case of

flame-out, the sump pump is shut off, and a burst disc directs the waste gas

flow to the bottom of the sump, where it bubbles through the sump water to

atmosphere.

Since the hydraztnes are normally liquid at standard atmospheric con-

ditionS, their vapors are encountered only in mixtures containing nonconden-

sible gases. The vapor pressures of N2H 4, M.M_ and UDMH at 25°C are

given in Table 2.9.3. The mole fraction of any constituent in a mixture of

pe_qect gases is equal to the ratio of its partial pressure to the mixture pres-

sure, and in equitib_.tum the partial pressure cabot exceed the vapor pressure

corresponding to the temperature of the mixture, The maximttm, or saturation,

mole fractions fo_" hydraztne vapors mL'_ed with other gases at standard atmos-

pheric conditions ate also given in Table 2.9.3, as well as saturation mass
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t
fractions In mixtures with nitrogen at one atmosphere. At higher pressures,

saturation mole fractions and mass fractions will be smaller; at higher temp-

eratures, they will be Larger.

The presence of a noncondensible gas, such as nitrogen, will tend to

lower ".'.'.eflame temperature considerably, particularly in the case of N2H 4.

Formation of oxides of nitrogen could actually be reduced by extra nitroge_ but

there might be considerable difficulty obtaining complete combustion. One

solution might be combustion at a very lean hydrazine-air ratio, with large

amounts of natural gas or other auxiliary fuel used to provide an adequate flame

temperature. In this case, however° destruction rates would be very. low and

there is still some question whether the percentage of hvdra2ine actually de =

stroyed would be increased significantly, or whether the hvdrazine discha._ge

would simply be considerably diluted by the excess air and other combustion

products.

An alternate solution might be the use of hydrogen, with its very high

flame temperature and wide combustion limits, as the auxiliary fuel.
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2.10 CATA LYTI_ION

In addition to using catalysts to speed reactions _n dilute solutions, it

is also possible to directly catalyze the decomposition of undiluted hydrazine

fuels, and their vapors, because of the positive heats of formation of all

these fuels. Appropriate catalysts are expensive compared to the copper

sulfate catalyst used in conjunction with the oxidation processes described

in earlier sections, but not nearly as e._pensive as the catalysts used in

hydrazine monopropellant thrusters and auxiliary power units. Various

nickel catalysts available at approximately $5 per pound could be used, for

example.

Reactions occurring entirely within a single phase are referred to as

homogeneous, while those occurring at an interface are heterogeneous. Ex-

perimentally one finds that the activation energy for the latter is lower; the

magnitude of the differential is a complex function of several thermodynamic

parameters. Catalysts are simply a relatively stable interface introduced

into the system to supply a favorable reaction site.

Catalysts are particularly- important for exothermic reactions. Al-

though the equilibrium constant is such that the reaction should proceed at,

say, room temperature, the rate may be prohibitively slow. From the em-

pirical Arrhenius equatiOnRate = A ex_--_R_)"Ea

where A Ea is the activation energy, one would expect a satisfactory rate

to be obtained by a sufficient increase in temperature. However, according to

Le Chatelier's principle, whenever an equilibrium system is perturbed the

system wlil attempt to readjust in such a way as to oppose the applied change.

So wilen the f:emperature is increased the equilibrium shifts in the direction

which causes an absorption of heat, thereby requiring an additional increment

of heat to rise the temperature, Stated mathematically the temperature de-

pendence of the equilibrium constant is

•  lnK _ -AH
_) (1/T_ R

Catalysts are the means by which the reaction can be carried out at temper-

atures where the equilibrium constant is favorable.
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During the course of our study_ we contacted a number cf manu/acturers

and others who might be able to give us further Information on catalysts for

hydrazlne decomposition. The following paragraphs present some of our

findings.

W.R. Grace and Co., Baltimore, Mary.land: 'The hydrazines would

be relatively easy to decompose using Raney ni_,kel catalyst." Dec omposl-

tion generally requires 3.5 percent catalyst by mass. In lots of 100 to 1000

pounds the cost of Raney N_.I 28 is $4.05 per pound,

The Harshaw Chemical Co., Cleveland, Ohio, supplied ltlformation

on two nickel catalysts developed by the Jet Propulsion Laboratory for the

decomposition of hydrazine. Indications are that their use is limited to the

controlled decomposition of monopropellaa_ hydrazine used in space probes.

The price quoted for the two nickel catalysts in 100 lb lots was approx-

imately $5 per pound.

Shell Development Company's Chemical Research Laboratory in Houston,

Texas, commented: "Although one £,f our customers in West Germany has

indicated that they successfully used Shell 405 Catalyst to remove traces of

hydrazine from organic process streams, we do not consider its use for

disposal purposes as economical (the catalyst currently sells for $2950.00

per pound and is subject to poisoning by chemical impurities)."

Dr. Robert Ottlnger, TRW Systems Group, Redondo Beach, California,

advised us that the inexpensive catalyst mentioned in the TRW report (see

seCtiott 2, 2) is molybdent.m based.

We were told that one suppliet"s proprietary catalyst for N2H 4 is a mix-

ture of iron atzt iron oxide.

In theory, the cost of a catalyst should be a one-time expense, since a

catalyst by definition does not take part in a reaction. In practice, however,

all catalysts have limited effective lifetimes, and are subject to poisoni.g

and degradation.

We believe this method does show promise of being an economical means

of destroying hydrazine fuels, and is worthy of further study to better identify

potential problems and better evaluate its economic aspects.
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2.11 PLASMA ARC AND MICROWAVE PLASMA DECOMPOSITION

A plasma are. is a device which creates a high temperature (4,000 to

12,000°F) ionized gas stream by striking an arc between two electrodes and

injecting the working gas (e,g. nitrogen, air, helium, argon, , ;c.)through

the region of the electric arc discharge. The gas is ducted through a plenum

chamber, then exhausted through a nozzle, either directly into the atmosphere

or into an evacuated tank.

"The term microwave plasma denotes an ionized gas produced via micro-

wave induced electron reactions with neutral gas molecules. ,1 In this method

high ionization levels and molecular dissociation are achieved without excessive

heating of the gas, and without the need for internal electrodes within the re-

action vessel,

Both of these related methods have been developed in recent years for

the _estruction of pesticides, defoliants, nerve.gas, and other toxic chemical

vapors, and could be applied to the case of hydrazine decomposition..As a

practical matter, one important difference between the two ' *he.fact that

the plasma arc process is a continuous process, while the microwave plasma

process is essentially a batch process, involving the containment of the gen-

erated plasma within the microwave cavity..

The microwave plasma process has been developed and applied primarily

by the Lockheed Pal. Alto Research Laboratory, and has been described in

articles by Bailin et al 2 and Hindlin. 3 The Bailin et al artical reports on the

decomposition of t_'o chemicals, d!methyl methylphosphonate (DMMP) and

diisopropyl methylphosphonate (DIMP), carried in helium and air streams

at concentrations from 0. 005 to 0.31 grams per liter. Flow rates in the 32

test ru_s reported varied from 0.44 to 4.20 grams of contaminant per hour;

the microwave power was from 50 to 510 watts, with no obvious correlation

in the reported data between power consumption and contaminant flow rate.
i

I. Bailin, L.F. ;Sibert, M.E. ;Jonas, L.A. _ and Bell, A.T. : "Microwave

Decomposition of Toxic Vapor Simulants," Environmenta ! Science and Tech-
nology, Vol. 9, page 254 {March 1975).

2. Ibid.

3. Hindiin, H.J. : "Microwaves Disintegrate Toxic Gases." Microwaves,

July 1975, page 14.
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In discussions at Florida Institute of Technology, Dr. Bailln argued that ex-

pressing his experimental data in terms of watt-hours per gram would be

m_sleading, and that much lower energy costs are possible.

The lockheed experiments were described rather concisely in the article

by Hindlin as follows:

"Typically, i0 cubic centimeters (cc) of gas may be processed at a

time with the present system. Almost 100% decomposition is obtained at the

relatively low temperature of 100°200°C. Depending on the reactants, the

breakdown products may be recovered, Current plans call for detoxiftcation

of pesticides and other related materials.

"The microwave disintegrator consists of an inert gas carrier supply

used to transport the toxic chemicals to a quartz reaction chamber or plasma

cavity and various chemical sampling systems, which allow the reaction to

be monitored. In the laboratory model a Varian voltage tunable magnetron

is used as a power source. (Tuning is + 50 MHz). It delivers up to 2.5 kW

of power at 2.45 GHz -- depending on the type o£ cooling used for the cavity.

Rf radiation at these levels is a concern, and as a result, an rf leakage de-

tector is used for safety. (Levels of 1-3 mW/cm 2 are not detectable even

near the discharge tubes with the present system). The plasma tube is made

of quartz and is helium filled.

'"To operate the system, the pressure in the cavity and waveguide is

first reduced to about 20 microns. Then, the gas to be destroyed is intro-

duced, where it flows into the cavity. After the cavity is cooled using air and

water, the VTM is turned on and tuned for minimum cavity reflection. A

Telsa coil is used to ignite the discharge and the plasma is thus initiated and

sttstained in the cavity. Constant monitoring of the chemical reaction pro-

ducts is performed by nuclear magnetic resonance, tras chromatography and

mass spectroscopy equipment. To protect the magnetron and insure optimum

power tratlsfer to the cavity, either an H-plane double stub turner or a coupling

hole adjustment is used on the input line. Both incideat and reflected waves

are monitored and displayed continuously. (In the case of .'m extreme mis-

match, the magnetron is automatically turned off). A circulator and water

load may also be used on the input line to protect the tube. Additional tuning

is provided by a sliding short on the back of the cavity. Th_ microwave

(
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discharge gap length may also be adjusted from 0.75 to I. 70 inches. This

is optimum for gases with an impedance in the range from 102 to 106 ohms

which is the case in these experiments. ,4

A comparable application of a plasma arc facility has been carried out

at Martin Marietta Corporation, Denver, Colorado. The following excerpt

from an informal MCC report describes their results.

'To evaluate the use of a plasma arc for pesticide detoxffication, chloro-

benzene was selected since it is representative of many organochlorinated toxic

agents, Argon was used as the primary working gas (injected between the

electrodes of a segmented arc heater) while the chlorobenzene was injected

downstream into the 5500°F argon plasma. The flow was exhausted through

a 1-1/8 inch exit diameter supersonic nozzle into a large tank maintained

at a pressure of 1/2 atmosphere. An evacuated collection vessel was located

downstream to sample the chlorobenzene decomposition products. The arc was

run under the following conditions:

Power Level 150 kw

Argon Flow Rate .04 lb/sec

Chlorobenzene Flow Rate .01 lb/sec (35 lbPnr)

The power level used was only a small fraction of the rated capacity of 5.25

megawatts. At full power, larger exit nozztes would be used and a toxic agent

flow rate of 500-1000 lb/hr can be readily projected with our equipment.

Thus, large quantities of material can be detoxified in a reasonable time

period.

'_he collected gaseous decomposition products from the test run were

analyzed by means of a mass spectrometer. The only chlorine-containing

species detected was HCf. The remaining species were aUphatic hydro-

carbons such as methane, ethane, and acetylene, as well as some hydrogen.

In addition, elemental carbon in the form of carbon black was deposited

throughout the vacuum tank,

'_rhe plasma arc conditions used in the test were selected without re-

gard for maximizing material disposal or minimizing power requirements

4. Hindltn, loc. cit.
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or primary gas flow rates. To establish the performance envelope for

complete andcost effective hypergol vapor destruction in the plasma arc,

a number of operational variables should be investigated in a systematic

fashion and optimized. These include:

Power level

Primary gas (Argon, Nitrogen)

Primary gas flow rates

Injection of waste organics

2. into ionized stream

b. bet_veen electrodes with primary gas

c. into plenum chamber

Hypergolic propellant flow rate

Decomposition products would be monitored by placing a water-cooled mass

spectrometer inlet tube directly into the plasma arc exhaust stream. The

plasma arc can be used as a research tool, using small quantities of pro-

pellants and short ran times to evaluate this type of disposal method and sub-

sequently as a pilot plant setup to quantize details of disposal operation. ,5

It should be noted that the power" consumption in this chlorobenzene

experiment was 4.3 kw-hr per pound of c_.mical destroyed, while the

figures for the tests reported by Bailin et al on DMMP and DIMP ranged

from 7.7 to 252 kw-hr per pound. All except the highest of these figures

represent relatively economical operation. For example_ we showed in

Sections 2.6 and 2.7 that 32.2 pounds of sodium hypochlorite are required

to treat one pound of MMH; if we consider electricity at $0.05 per kw-hr

and sodium hypochlorite at $0.10 per pound, we obtain figures of $3. 22

to chemically treat one pound of MMH versus $0.21 to destroy one pound

of chlorobenzene in a plasma arc.

There are, of course, a number of disadvantages to the plasma arc and

microwave plasma processes, including high capital cost, sophistication and

delicacy of the equipment and the need for highly skilled operators. The dif-

ficulties associated with taking this sort of equipment out of the laboratory

5. Author anknown: "Plasma Arc Disposal of Hypergolic Propellant

Vapors," Inforrnal report from Martin Marietta Corporation, Denver,
Colorado (no date_.
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and into the field are hard to evaluate. Considerable additional development,

testing and evaluation are required before these processes can be applied in

an operational context. We believe further study is Justified, however, by

the promise of extremely fast, complete and economical destructlon.of hyper-

gollc prope!lants.
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2.12 ABSORPTION OF VAPOR

2,_2.1 Scrubbinfi with Water

The most common means of removing hydrazine fuel vapors from vent

streams involves the use of packed towers in which a spray of water introduced

at the top trickles down through the packing material - raschig rings, saddles,

quartz or cersmtc spheres, stainless steel shavings, or similar - while the

vapor stream flows upward, countercurrent to the water flow. A number of

variations on this general theme are possible; some of the specific scrubbers

that have been used are described in Appendix D, along with a brief

theoretical description of scrubber opera:Ion and design considerations.

Water scrubbers are highly effective in terms of removing hydrazine

vapors from vent streams because of the very high solubility of the hydrazines

in water. Contaminant concentrations can readily be reduced to parts per

million levels. Their chief disadvantage lies in the fact that the hydrazine is
o

not destroyed in any way - neither reaction nor decomposition takes place.

It is simply changed to a form that is more easily handled and stored. The

aqueous solution must still be treated if direct release of the untreated fuel

is to be avoided. In the meanthne, all the usual precautions regarding handling

and storage, advoidance of spills, leaks, personnel contact, etc., must be

adhered to. A much better approach, in our opinion, is to use a scrubbing

fluid that will react with the fuel vapors as they are absorbed, as described

in the following subsections.

G
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2.13 CONDENSATION OF VAPOR

2.13. I Introduction

Hypergolic propellant vapors mixed with other gases in vent streams

are usually at or near saturation, except in the case of purge streams. If

the vapors are at saturation, then any decrease in temperature {or increase

in pressure at constant ter,_perature)will result in condensation of some of

the propellant vapors. The resulting liquidpropellant will be essentially

pure, and can probably be returned to the propellant supply tank with no re-

quirement for treatment or disposal.

Since itis L_otc.,_pectedthat vapor condensation could ever lower pro-

pellant vapor concentrations to very low levels, some form of scrubber,

cryogenic trap, or plasma device would stillbe required before the gas

stream could be discharged to the atmosphere. A condensation unitwould

be a simple and effectivemeans of removing the greater part of the contam-

inant from the stream, however, thus greatly reducing the load on whatever

system is used to achieve an acceptable discharge concentration.

Y
i
t

2.13.2 Analysis

A method of analysis that is applicable to any condensible constituentin

a gas stream is presented in Appendix E. The analysis depends on knowledge

of the vapor pressure curve for the condensible constituent, the heat of vapor-

ization, hfg, and the specific heats at constant pressure for both the conden-

sible constituent and the noncondensible mixture, CpC and CpN.

In the case of the hydrazine types of interest, the following algabraic

relationships for vapor pressure in terms of temperature were established

by investigators working in the early days of rocketry under the sponsorship

of the Bureau of Mines and Office (,fNaval Research (p in mm Hg, T in oK):

For N2H 4 I

lOgl0P = 7,80687 - 1680.745/(T - 45.42),

II l

I. Scott, D.W.; Oliver, G.D.; Grosst M.E.; Hubbard, W,N.; and Huffman,
H. M. • "Hydrazine: Heat Capacity, Heats of Fusion and Vaporization, Vapor
Pressure, Entropy and Thermodynamic Functions. " J,Am. Chem. Soc. Vol.
71, pages 2293-97 {1949).
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q

4

2
For MMH ,

lOgl0P =

3
For UDMH ,

-7.88 log10 T - 3146.0/T + 31.746,

lOgl0P = -2717.132/T - 6.745741 lOgl0 T + 28. 000194,

All of these relationships were based on laboratory measurements,

and are believed to result from establishing the empirical constants in theo-

retical thermoehemical equations by least=squares fitting to the measured

data, Plots of these equations aze presented in Figure 2.13.1.

The values of hfg for 142H4, MMH, and UDMH reported in the same
references Just quoted are 10,700; 9648; and 8366 cal/mole, respectively,

at 298.16°K. In the case o_ the substituted hydrazines these are measured

values, while for N2H 4 it is a theoretical value based on the vapor pressure

measurements, using the Berthelot equation of state and critical point data.

In the latter case, the estimated uncertainty is given as +_75 cal/mole. Be-

cause this temperature (equal to 77°F) is an appropriate one for our vent gas

applicat/on, these values were used as constant approximations to hfg through-

out the temperature range of interest,

Values for the specific heats c were published for N H by Scott
pC

et al 4, and for MMH by As,on et alS. The values given at 22.46°K were

12.6 and 17.0 cal/deg/moie+ respectively, and these values were chosen for

the constants in equation (4') of Appendix E. In both cases these were the

lowest temperatures for which vapor phase specific heats were given. Data

for UDMH have not been found; on the basis of the data above, and the data

iii II '1 I I i

2. Aston, J.G.| Fink, H,L; Janz, G.J.; and Russell, K.E.: "The Heat
Capacity, Heats of Fusion and Vaporization, Vapor Pressures_ Entropy, and
Thermodynamic Functions of I_l._thylhydrazine..' 3. Am, Chem, See,, Vol,
73, pages 1939-43 (1951). Note: the equation as *_ublisht_l contains a mis-
placed decimal point in one term; this error was corrected in the equation
written above to yield agreement with the e._perimental data published in the

paper,

3. Aston, J.G. ; Wood, 3. L. ; and Zolki, T.P. : "The Thermodynamic Pro-
perties and Configuration of Unsy_etrleal 15imethylhydrazlne." J, Am,

Chem_ Soc,, Vol. 75, pages 6202-04 (1953).

4. Op, eit.

5. Op, tit,
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in Table 2. I. 1 for the heat capacity of liquid UDMH, MMH and N2H4 at

77°F, a guess of 22 cal/deg/mole for the specific heat of UDMH in the tem-

perature range of interest was made and this value used in equation (4').

The values of CpN used were 6.95 cal/mole-°C for nitrogen, and 5.00

cal/mole-°C for helium,

The computer code described in ApperA_ E was used, with these values,

to investigate cases in which saturated mixtures initially at 300°K (80, 33°F),

2300 mm Hg (44.47 psia) are progressively cooled to 2_°K (-9.67°F), or to

the freezing point, 275°K (35,6°F), in the case of N2H 4.

Figures 2.13.2 through 2.13.6 present the results for nitrogen carrier

streams saturated with the respective hydrazine fuel vapors. Figure 2.13, 2

shows the actual amount of hydrazine condensed, as a function of temperature.

The large differences between UDMH, MMH and N2H 4 reflect the different

amounts of fuel vapors initially present; UD_I, because of its relatively low

boiling point (high vapor pressure), is initially prosent in large quantity,

whereas N2H 4 with the highest boiling point and lowest vapor pressure is

present in the vent gas in only very limited quantities. Figure 2.13.3 presents

the same information, except that the mass condensed at any point in the pro-

cess is calculated as a fraction of the initial fuel mass rather than the total

initial mixture mass. Here the three curves are much closer together, with

N2H 4 looking most favorable by a smxll margin. Figure 2.13.4 shows the

heat removal required to achieve any given temperature, As in Figure 2.13.2,

the UDMH curve is highest because of the relatively large amount of UDMH in-

itially present. This information is combined with the results for mass con-

densed in Figures 2.13.5 and 2. i3,6, which show the "coSt", in terms of

heat removal per unit mass condensed. Figure 2.13.5 shows total heat removal

divided by total mass condensed for each fuel, while Ftgux_e 2.13.6 shows the

incremental cost - calories per gram for the incremental mass of fuel condensed

at any temperature. In these plots it is evident that recovery of UD,_ff-I is the

most attractive in terms of costs per unit mass of fuel recovered.

To further define tile cost, note that

I cal = .0005274 kW-hr
gram Ibm

so that the first UDMH condensed requires 0.0923 kW-hr of energy removal pet
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pound recovered, the first MI_IH requires 0.1735 l_W-hr per pound and the first

N2H 4 requires 0.458 l_W-hr per pound. Similar figures at the point when 80%

of the original fuel vapors are condensed ar_ 0.1382, 0. :l,t9, and 1.292, re-

spectively. If we assume that a refrigeration system with a coefficient of per-

formance of 3 is used, and that electrical costs are 3 cents per kW-hr, then

these fisures also represent the electrical cost in pennies per pound of propel-

lant recovered - modest figures even in the worst case. Capital equipment

costs are of course not included.

Similar cases in which the carrier streams are h_lium rather than nitro-

gen are plotted in Figures 2.13. 7 through 2.13.11. For these cases the only

contaminant vapor considered was MMH° We can see that percent condensed

ann energy per unit mass condensed are virtually the same as in the nitrogen

case: quantities expressed per unit mass of initial mixture are of course much

larger because of the very low molecular weight of helium.
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2.13.3 Experiments.

In order to create an experimental model, however imperfect, of the pos-

sible recondensation of vented monomethyl hydrazlne, the following experiments

were conducted.

A simple distillation of MMH was performed using an air-cooled conden-

ser, as shown in Figure 2.13.12. The room temperature at this time was 23°C.

Starting with 25 ml. of MMH a total of 2". 5 m]. or 90% was recovered in 15

minutes. The r:_tio of the volume of air in the system to the volume of MMH

was 11:1.

A second series of oxperiments was run similar to the above except that

a water cooled condenser and 5UC cooling water were used, as shown in Figure

2.13.13. The data in Table 2.13, 1 denote the initial volumes of MMH, the ratio

of the volume of air in the system to the initial starting volume of MMH, the

volume of MMH recovered nnd the percentage recovery.

TABLE 2.13.1

CONDENSATION OF MM]-I

MMH Vol. Air Vol. MMH Percent

InitialVolume (ml.l MMH' Initia_Volume Recovered Recovered

Iml.)

5 68.4 4.8 96

10 33.7 9.8 98

20 16.4 19.5 98

30 10.6 29.0 97

40 7.7 39.0 98

A third experiment w,'tsconducted In which the MMH vapor was mixed with

steam, as shown in Figure 2.13.4. 10°C cooling water was used and a starting

volume of 25 ml. MMH, with an air to MMH volume r,'ttloof 95, 6. Five httndred

ml. of water was converted to the steam which was used for scrubbing. 24.0

ml, of MMH {96%1 was recovered in the receiver flask, as assayed using the

p-DAB method.
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100 ml. flask
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Total volmne of air outside flask -- 203 ml.

Figure 2, 13.12 F.xpct, imental apparatus for distillation o{
M,Mll and air cooled condensation.
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/to trap

Q

Standard Friedrieh's
•4---. Condensec

I

I,MMH

.,4-----Receiver

I00 ml. flask

Air volume outside of distillation flask -- 247 ml,
Cooling coil volume -: I90 m[.

Cooling water flows at a rate of 30 liters/hr, at 5°C.

F_gure 2.13.13 Experimental apparatus for d_,stlllatlon of
MMH and water cooled condetlsation.
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Air Tr_
Cooling water (in)......._.._.

Cooling water (out),,s,..--" -=-' I

• [ Traps with absorb-

ing sSlutions
(75 ml)

Distillate

Feed Ii ne --...,_ _ Feed I i ne

/-1, L_ .
i 'MMH

Water

(500 ml)

• i| I

Heating mantle ¢iv_e Heating mantleRec r flask

Dimensions

1, Receiver (vol.) 1100 ml.
2. Steam generator flask (re!.) 1000 ml.
3. Distillation flask (vol.) 100 ml.
4. Cooling coil (vol.) 38 ml.
5. Condenser (vol.) 400 ml.
6. Feed line (vol.) 8 ml.
7. Feed lines (length) 50 cm.

S. Traps (vol.) 150 ml.
9. Cooling coil (bore) 0, 5 cm.

(diam.) 3 era.
(length) 25 cm.
(number of turns) 15

Figure 2, 13. ]4

(each)

Model recondensation/ste am scrubbing disposal system.
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2.14 CRYOGENIC TRAPPING OF VAPOR

Cryogenic trapping refers to the use of liquid nitrogen systen, s in which

gaseous effluent streams containing hydrazire fuel v--_ors are cooled to below

the triple point of the fuelt resulting in accumulation of solid phase hydrazine in

a cold trap. This collected fuel can then be treated chemically a_l disposed of,

or perhaps reused.

An intensive e.xperimental program was performed by us to evaluate this

means of cleaning gaseous effluents. The concept was not successfully demon-

strated, although further development and testing might well establish the viability

of this concept. Detailed results of our e._q_eriment program were not available
i

in time for inclusion in this Handbook, but are available as a separate report.

1. Thomas, John Jo : 'Disposal of _ypergolic Propellants - Final Report, Task I,
Phase VL" Florida Institute of Technolog_y, ,_ielbourne, FL, August 1976,
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2o15 ADSORPTIONOF VAPOR

Molecular sieves can be used to remove a wide variety of contaminants,

including hydrazine fuel vapors, from gaseous effluent streams. In these

systemst the contaminant molecules are adsorbed on the surface of th_ sieve

material, which might be, for example, activated carbon, activated aluminat

or silica gel, with a very high surface area to volume ratio.

An e_Y_ensive series of tests were performed by us to evaluate the practiclity

of this method for removing hydrazine fuel vapors from nitrogen and helium

streams, Adsorbents investigated included calcium hypochlorite, silica gel,

acidified alumina and charcoal briquets, Detailed results were not available
1

in time for inclusion in this Handbook, but are available as a separate report.

1. Sivtk, H. ; Thomas, J, ; Cohenotn', B. ; Wiedet'hold, C, : '_ypetgolic Pro-

pellants - Liquid and Vapor Disposal: Final Repot't, Phase v!, Task 8, D1"y
State Sc_'ubbing Systems for NoO.t and ._13IH." Florida Iflstitute of Technology,

._Ielbourne, FL _2901, hlarch')9_7,
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2.16 UNTREATED DISPOSAL

2.16.1 Open Burning

Open burning is the burning of waste material on open land without the

use of combustion equipment. This method is not used frequently for pro-

pellant destruction. Emissions of NO x, CO, NH 3, unburned fuel, and other

undesirable products result from uncontrolled combustion temperature t in-

complete combustion due to poor gas n:Lxing with air, and insufficient resi-

dence time of partial products at elevated temperature.

Opcn burning Is not considered to be an adequate form of waste propel-

lant disposal because of inadequate gaseous effluent control.

2.16.2 Ocean Dumpin_

Ocean dumping of a wide variety of hazardous wastes, including propel-

lants, has been carried out in many parts of the world as an expedient or an

economically attractive disposal technique. Sea water is used as a reactant

or neutralizing medium and as a diluent.

It Is quite Likely that within the forseeable future the United States will

totally ban ocean dumping of all toxic industrial and military wastes.

2.16.3 Pourin_ Directly on the Ground

Informal communications and conversations have indicated that the pouring

of waste liquidhydrazines directly on the ground in remote areas is stilloc-

casionally practiced, in an informal and unpublicized manner. Itwould be very

difficultto make a strong case regarding the undesirability of disposing of

small amounts in this fashion. Hydrazine is not a "persistent" chemical, and

will rapidly oxidize n_'_ddecompose to near-zero concentration. Naturally

occurring bacteria and organisms will serve to hasten the decomposition. R

is easy to envision circumstances where carefully spreading a small amount

of hydrazine on the ground, away from work areas and potable water supplies,

woald be the fastest and most practical means o[ destroying it,and probably

one of the safest. In general, however, _ny regular, repeated use of hydrazine

fuels implies the need for a properly desit;neddisposal system, which then

should be used for disposal of small as well as large quantities.
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As a means of disposing of any significantamount of waste fuel, this

method certainly cannot be recommended. In addition to the danger involved

in actually carrying out the operation there is the likelihood of uncontrolled

vapor release, and unpredictable local effects, including possible lingering

contamination in the case of significantquantities of hydrazine.

2.16.4 Vent to Atmosphere

Venting of hydrazlne vapors intothe atmosphere _.sa common practice;

precautions vary from zero to fairlyeiaborate modeling to determine whether

meteorological Jaonditionsare such that turbulent mLxing will reduce concen- I
l

trations below certain threshold values within a specified rndius. Most common

is for wind direction and veiocity tQ be monitored; near-zero wind or certain

wind directions can shut down operatlu_s.

The provisional maximum exposure limit recommended in the TRW

report (Section 2.2 of this Handbook) is 0.01 ppm in the atmosphere. Ifap-

plied any-where near the vent stack, this limit would preclude venting directly

to the atmosphere at significantflow rates on all but the windiest days. Even

more liberal standards could place se_,ererestrictions on vent operations.

Ver v tallvent stacks alleviatethe problem of concentrations at ground level

under most conditions, but there is no guarantee that air pollutionstandards

will be appiied only at ground level.

Direct venting of hydrazine fuel vapors probably does not represent a

significantthreat to the environment. However, in view of the carcinogenic

potentialof MMH and UDMH, involving possible long-term, low-level ex-

posure hazards_ and considering the ease with which these vapors can be

removed from a vent stream, itwould seem that direct release to the

atmosphere should be avoided.
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3.1 MATERL_L DESCRIPTION

The term "nitrogen tetroxide", as used in aerospace applications, refers

to the equilibrium mixture of molecules of the monomer, NO 2, and dimor, N204.

These two substances are present at appreciable mole fracttotm under all ton-
I

dtttons of equilibrium between the liquid and gaseous states. At the normal

boiling point, 70. l°F {21.15°C), the equilibrium composition is 16°.. NO o, 84%

N,204 by mass. As the temperature increases, the equilibrium shifts toward

the monomer: at 300°K (80.33°F) and one atmosphere, the equilibrium compo-

sition is 20% NO 2, S0"_, N204; at 350°K (170.33°F_ it is 73°,_, NO 2, 27% N204.

At still higher temperatures, the dissociation of NO 2 into NO and 0 2 also be-

comes significant.

NO., is one of the most insidious gases known. Inflammation of kings may

cause only slight pain or pass unnoticed, but the resulting edema several days

later may cause death. I00 ppm is dangerous for even a short exposure, and 20O

ppm may be fatal. The Threshold Limit Value tTLV) is five parts per million by

volume, or nine milligrams per cubic meter. The odor threshold is less than

0.5 ppm.

Nitrogen tetroxide is a powerful oxidizing agent, containing about seventy

percent available oxygen. It is extremely corrosive in the presence of water.

It is toxic in either the liquid or vapor states. It may react with combustible

materials, including carbon, phosphorus, and sulfur.

Nitrogen tetroxide is soluble in concentrated sulfuric and nitric acids.

reacts with water to form nitric acid _HNO3_ and nitric oxide (NO}, and with

•tlkalies to form nitrates and nitrites.

It

Several of the physical properties of nitrogen tetroxide are presented in
,.j

Table 3. I, l."

1. Giauque, W. F, and Kemp, ,I. D. : "rhe Entropies of Nitrogen Tetroxide
and Nitrogt, n Dioxide. The lteat Capacity from 15°K to the Boiling Point. The

tteat of Vaporization and Vapor Pressure. The Equilibrium Nee 4 = 2Nee :
2NO + Oo. ' ,I,mrnal of Chemical Ph.vsics, Voi. 6. p,'kges 40-5'2, (1938). "

2. '1tazards of Chemical Rockets and Propellants Handbook. Volume IIh
Liquid Prolwllant Handling, Storage and Transportation. " Prepared by the
Liquid Proi_.,llant Handling anti Storage Committee assisted by the Committee
on t.:nvironn_ental llealth and Toxicology, ,IANNAF P--opulsion Comtnittee,

llazards Working Group. AD 870259, May 1972.

_1_ - . ., _ _ . , ....... . _. =_ . . -. _ .... --. _- .: .----".--:" :::me_----- . -_._-, ----_ "TT. :---__.-_,i_ --_-f'_.=_ ........ _ "-i."-- i _ ...........
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TABLE 3.1.1

PHYSICA L PROPERTIES OF NITROGEN TETROXIDE*

Molecular Weights:

Normal Boiling Point:

Freezing Point:

Liquid Density:

Critical Pressure:

Critical Temperature:

Heat of Vap.Qrizotion:

N204:92.016

NO2:46.008

Equilibrium at 300°K (80.33°F), 1 atm:
76.63

70. l°F (21.15°C)

ii.8°F (-11.2°C)

12.1 Ib/gal (I.45 l,r/cm3) at 68°F (20°C)

99.96 atm (1469.C psia, 1.013 x 107 Pn_

316.8°F (158.2°C)

9110 cal per 92.016 grams of equilib-
rium mLxture at 21. 150C (178.2 Btu/
Ib at 70. lOFt

* Refers to equilibrium mixture of NoO 4
specified.

and NO,>, unless otherwise
m

,: : -. -_.-._ -_ ..... -_ -_-, _- _ "_',," ,'" " _, _ - _ ' - _"_ _ -- ,,,,dl,.T,e_- " - " " '_l' 'Ti_ .... i ......... I1"
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The molecular weight of the equilibrium mixture can be found in terms of

the degree of dissociation, {_ , which in turn depends on the equilibrium con=

stant, K. According to the "law of mass action," the equilibrium constant is

related to the change in Gibbs free energy, _G °, according to

K = exp (-_G°/RT),

where R is the universal gas constant, T the mLxture .temperature, and A G°

is a function of the mixture temperature. (The superscript "o" refers to the

reference pressure, usually taken to be one atmosphere.

This expression is more easily evaluated if we expand the free-energy

change as:

where _ Ho°

= O* /_H° -A A°°- At o o
A A o= (G° - Ho°_ + H o

is the enthalpy of reaction at standard temperature and pressure.

With this expansion, the equilibrium constant becomes

- To- -

,'he function[ T o--] for each of the constituents, N204 and NO o,. can be
calculated in a fashion quite similar to the entropy, and combined to form the

change for the reaction N20.t - 2NO.).. These calculations were performed by

Giauque and Kemp 3 for a number of temperatures; the results are tabulated in

Table 3.1. '2.

Gtauque and Kemp also devoted a good portion of their paper to ascer-

taimng the best value of the enthalpy of reaction at standard conditions, based

on the results of various experimenters over the years and theoretical con=

siderations. The result was

( Atto°)N204 = 2NO,,_ --- 12,875 cal per mole

where "per mole" means, as usual, per mole of undissociated N204. Using

3. Op. tit.
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G _ Ho ° )this re_lt and the values for the change in -_ , we calculated the equi-

librium constant at each temperature; the results are shown in Table 3.1.2.

If we wish to take account of gas imperfection in using these values of K

to find the degree of dissociation, 0_, at any pressure and temper:tture, then

we must express the equilibrium constant in terms of the fugacities of the con-

s t itue nt s: ',

(fNO2l"
K =

fN204 ,

where the fugacities fi are found using approximate equations of state for the

constituents. According to Giauque and Kemp, in the vicinity of the normal

boiling point both NO,:. and N_O4.' follow an equation of state of the form

pV = RT(1 ÷,_.p)

where A has the approximate values -0.01 atm -1 for N204 and -0.005 atm -1

for NO,,. Furthermore, this equation can be extended to a wider range of

temperatures by using the fact, based on the Berthelot equation of state, that

A is approximately proportional to T-3:

_N20 t =-0.01 ; NO._. -0.005 2 atm-1

The fugaeities of the components of a mixture are given by

LJo _ _ P/ dp W

!

where X i is the mole fraction of component i in the mLxture, V i is the partial

molal volume of component i, and p is the total mixture pressure. In oUr case,

if _ is the fraction of the N204 that dissociates, then considering a hypo-

thetical reaction starting with one mole of undissociated N204 and proceeding

to equilibrium:

N2Ot (1- O_ )N204 + 2 O( NO 2

we see that 111_ 2-- , : .
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TABLE 3. i. 2

THERMODYNAMIC FUNCTIONS FOR THE REACTTON

N204 - 2NO 2

(From Giauque and Kemp, J. Chem. Phys.,

Vol. 6, pages 40-52 (1938}.)

T, OK (OF)

275 (35)

298.1 (77)

300 (80)

325 (125)

350 (170)

375 (215)

400 (260)

425 (305)

' mole lb_n_

39. 051 (. 7639)

39. 298 (. 7687)

39.312 (. 7690)

39. 534 (. 7734)

39. 711 (. 7768)

3_. 867 (.7799)

39. 977 (.7820)

40. 093 (.7843)

K0 atm

.02002

.14088

.16283

.9598

4.362

16. o_o

50.51

138.93
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Further, using the equations o_ state given by Giauque and Kemp we obtain

R_T 1 _p) for N204 and NO2, where= _ (1 both

Solving for the fugacities:

lnfi =lnlX Ip) + _p,

... oe °

aim "1 T in OK.

Thus the fact that,_ N204 =.o_ NO2 leads to the simple result

K =4_p,

the same result that would have been obtained by assuming the component gases

to be perfect. Itshould be noted, however, that the actual dissociation (_ is

not the same as the "apparent" dissociation, C_;, that would be deducted from

experimental measurements ifthe gases were assumed perfect:

(_l= _ _ I (for this reaction),

and itcan be shown that the relationshipbetween (_ and _X # for our case is

_C = {_' +_p,

Table 3. i.3 presents values for _ at various temperatures and presures,

calculated from the equation

and using.._e values of K in Table 3.1.2.

Itshould be noted that all of the computations in Table 3. I.3 neglect any

dissociation of the NO_, that might occur. Fan and Mason 4 have considered the
w

i J L

4. F.'m, S.S.T., :rod Mason, D. M. : "Properties of the System NoO 4 -- 2NOo--
2NO '-0._. " Journal of Chemlcal and Engineering Data, '_oI.7, pp. "183-186 "

1962_. "
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TABLE 3.1• 3

DEGREE OF DISSOCIATION

N204 __ 2NO 2

NEGLECTING NO 2 DISSOCIATION

0•5 atm

7•3 psia

275°K .0996

35°F

298• l°K. 2565

77°F

300°K • 2744

80°F

325°K • 5695

125°F

350°K • 8280

170°F

375°K • 9435

'215°F

400°K .9808

260°F

425°K .9929

305°F

i

•0706

• 1844

.1978

•4399

.7223

•8957

•9626

•9859

2.0 atm

29.4 psla

. O5O0

•1315

• 1412

.3273

.5940

•8184

,9291

•9724

3•0 atm

44. _ psia

•0408

•1077

• 1157

•2721

•5163

•7582

.8989

.9594

5.0 atm

73.5 usia

.0316

•0836

.0899

o140

• 4231

.6692

•8464

•9350

I0,0 atm

147.0 psia

•0224

.O529

.0637

.1531

•3136

.5372

•7470

.8812
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effect of this second dissociation for the case p = 1 atm. This is, they treat

the total system

N204 = 2NO 2 = 2NO + O2,

and if O_ I' O_ 2' and Ki, K2 are the degrees of dissociation and equilibrium

const_ants of the two reactions (the number of moles of NO formed per mole of

undissociated N204 is 2C_ 2), then the equations relating them at p = i atm are

2 (8:KI)2 . 4(4+KI ) (4_22.(_2KI_KI)]I/2OC -- (SIK1>+tO:2
2 (4 + K I)

_2 2

K 2 = o _ .
(C_ i- (_ 2)'(1+ (_l--C_ 2 )

Values of K 2 at various temperatures were also given by Giauque and Kemp;

using the values of both K I and K 2 from Giauque and Kemp_ Fan and Mason

calculated the values of C_ I and C_ 2 given in Table 3.1.4. The small dif-

ferences between these values for 0_ 1 and those in Table 3.1.3 are the result

of computational differences - probably a slightdifference in the value chosen

for the enthalpy of reaction - rather than the very small values of {_2 at these

temperatures. At higher temperatures, the second dissociation becomes im-

portant.

- I ! I
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TABLE 3.1.4

DEGREES OF DISSOCIATION AT ONE AT,MOSPHERE (14. 696 psia}

FOR N20 4 2NO 2 (O_ i}

ANDNO 2 _ NO +_O 2 (O(2)

(From Fan and .%lason,J. Chem. En_, Dat._ Vol. 7, p. 133.}

T

300°K (80°F)

350°K (170°F)

400°K (260°F)

450°K (350°F_

500°K (440°F_

550°K (530°F%

600°K (620°F_

700°K (800°F_

S00°K (980°F}

900OK (1160 ¢ F}

1000°K (1340°F_

ll00°K (1520°F_

.2OO7

.7256

.9642

•9947

.9939

.9997

•9999

1.0000

1.0000

1.0000

1.0000

1.0000

(_2

3.24 x 10 -5

7.54 x 10 -4

4.332 x 10 -3

1. 790 x 10 -2

4.910 x 10 -2

• 1100

• 2C83

•458

• 7338

• 8752

• 938

• 965
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3.2 RECOMMENDATIONSFROM OTHER SOURCES

The manufacturer of nitrogen tetroxide, Hercules Inc. of Wilmington,

Delaware, recommends: 'Transfer to salvage vessel. Neutrall_,e with soda

ash or lime. Keep from sewer or streams. ,1 They further advise that they

could "possibly rework N204 to reduce water conteut an _- adjust oxides con-

tent. Some contaminants, however, may not be acceptable in our plant. Each

rework would probably require prior submission of an analysis showing im-

purities and a sample for our verification. ,,2

The JANNA F Hazards Handbook contains the following recommendations:

t_mall quantities of N204 or mixed oxides of r, itrogen can be disposed of by per-

mitting them to evaporate and dtspei, se in the atmosphere. Pit neutralization

of N204 with limestone or soda ash is used but is not very effective. Large

quantities can be burned in a controllable manner with a fuel such as kerosene.

The disposal area should be welt isolated and the perimeter cleaned of all com-

bustibles. Spray the N204 or mixed oxides of nitrogen onto the surface of a

burning pit partially filled with fuel. Repeat the procedure after burned ou_ area

has cooled. Ftreflghttng equipmen_ should be nearby during burning and dis-

posal operations, and persons engaged in the oper._tion should wear suitable

protective equipment. ,,3

The TRW Report did not refer to nitrogen tetroxide.

Nitrogen tetroxide combines with water to form nitric acid and nitric

oxide; recommendations regarding the disposal of nitric acid are presented

in the following chapter.

i| |

1. '_,,iaterial Safety Data Sheet SOS-26." February 20, 1973.

2. Written communication dated October 24, 1973, in response to our inquiry.

3. "Hazards of Chemical Rockets and Propellants Handbook, Volume III:
Liquid Propellant Handling, Storage and Transportation." Prepared by the

Liquid Propellant Handling ard Storage Committee assisted by the Committee
on Environmental Health and Toxicology, JANNAF Propulsion Committee,
Hazards Working Group. AD 870259, May 1972.

........ 2 ....... ....=.r-_._ Z. .......... ._, .._:.:., C%_,___'_._ %_,-_-,_ _'_;_ "_'["_ -'':':'"'=:. _i, .......................... i .... "i
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3.3 CHEMICAL NEUTRALIZATION

3.3.1 Introduction

By far the most common means of disposing of nitrogen tetroxide is

dilution with water followed by_neutralization. Substances used for neutral-

ization include sodium carbonate (soda ash), Na 2 CO3_ sodium bicarbonate,

NaHCO3; sodium hydroxide (caustic soda), NaOH; calcium oxide (lime) CaO;

and calcium hydroxide, Ca(OH)2. Other alkaline compounds, such as mag-

nesium hydroxide, Mg(OH)2, and calcium carbonate(calcite_ aragonite, lime-

stone, marble), CaCO 3, could also be used. In at least one instance, tri-

ethanolamine, N (CH2CH2OH)3,has been used. It is also common to dilute the

N204 and add it to the same disposal pond used for hydrazine fuels; these ponds

are then usually neutralized using sodium hydroxide or hydrogen peroxide with

copper sulfate catalyst, or both.

:_, tl. :_ ¢;hemt¢;=l D=_e-!ption

The first step in the typical dilution/neutralization process, the mkxing

of N204 and water, itself involves a chemical reaction:
3
_'N204 ÷ H20 _ 2HNO 3 - NO

3 NO 2 + H20 _ 2HNO 2 * NO

Some nitrous acid, HNOo, will also be formed.

Nitric oxide, NO, is an insoluble gas that is also toxic, albeit colorless.

The Threshold Limit Value is 25 ppm by volume in air, or 30 mg/m 3. Once

in the atmosphere, the NO slowly oxidizes to NO 2. Thus the water dilution

process is a very critical one from an env!ronmental point of view, normally

involving the release of large quantities of NO x. Even if performed inside a

reaction vessel, a normal water scrubber on the vent will not be able to re-

move the NO from the vent stream.

The nitric and nitrous acids are then neutralized by the alkaline

materials added, as for example:

HNO 3 + NaHCO 3 _ NaNO 3 - H20 -- CO 2

HNO 2 - NaHCO 3 _ NaNO 2 - H20 + CO 2
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1 1
HNO n ÷ _Na2CO3 _ NaNO n + _H20 +

HNO n + Ca(OH) 2 _ Ca(NOs) 2 + H20

HNO n _- Mg(OH)2 _ Mg(NOn) 2 + H20

HNO n + NaOH _ NaNO n _- H20

CO

where n -_2,3. The results are summarized tn Table 3.3. I. The products

of all of these reactions involve insoluble nitrate and nitriteions. These

products are themselves corrosive and toxic, and present a secondary dis-

posal problem of some magnitude. A means of disposing of them -- or

actually of turning them to a useful purpose -- is the subject of Section 3.4.

q
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TABLE 3.3.1

NEUTRALIZATION OF N204

Neutralizing

Reagent

NaHCO 3

Na2CO3_

c a(OH) 2

NaOH

Mg(OH) 2

Products
Formed

Solutions of

NaNO._ and
NaNOT), HoO,

m

CO 2

Solutions of Na

salts, H20, CO 2

Solutions of Ca

salts, H20

Solutions of Na

salts

Safety of
Reagent

Irtnocuous

Innocuous

Skin irritant-

Inhalation

hazard

Corrosive to

all tissues

Solutions of Mg
salts

innocuous

Relative chemical

cost per pound of

N204

$. 165

S. 15

$.08

$.025

$.57
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3.3.3 Comparative Evaluations

The most important considerations in evaluating the neutralizing agents

are effectiveness, safety, and environmental impact. All the neutralizing

agents are essentially equally effective but the strong basis Ca(OH) 2 and NaOH

are a hazard in that they can cause severe burns if accidental skin contact

occurs. Calcium and magnesium salts increase the '_ardness" of water and

thus present an environmental disposal problem if present in large quantities.

The combined weight of NO 3 and NO 2 ions will be approximately the same for

all reagents and present equivalent problems.

In order to obtain some sort of comparative evaluation of these five es-

sentially similar alkaline reagents, each neutralizing agent was given a rating

of 1 through 3 in each of three categories: safety and effectiveness, environ-

mental hazard, and cost. Weighting factors of 3, 2, and 1, respectively, were

given to the categories, so that a maximum total of 15 points were possible.

The results are sho_,'n in Table 3.3.2. The "Total Points" column is the result

of multiplying the rating in each column by the weighting factor for that column

(in parentheses). For example, a rating of 3 in s_ety and effectiveness means

the agent poses no hazard to people handling it, and _he reaction with N20 4 is

fast, complete, and reliable. A rati_g of 2 or 1 means the agent has important

disadvantages in this category. A rating of 3 in the environmental hazard

category means the product of reaction with N20 4 is as harmless to the envi-

ronment as can be expected. A rating of 2 or 1 means that the product con-

stitutes a more serious environmental hazard. A rating of 3 in cost means

the price ranges from $0.01 to $0. l0 to neutralize one pound of N20 4 (as

of the March 1974 costs listed in Table 3.3.1). A rating of 2 indicates the

cost range of $0. I1 to $0.20. A rating of 1 is anything above $0.20. Two

additional neutralizing materials not included in Table 3.3.1, urea (NH2CONH 2)

and triethanolamine (N(CH2CH2OH)3), have been included in Table 3.3.2 for

completeness.

It is seen that the result of this evaluation is that the two '_nousehold pro-

ducts", sodiura carbonate ewashing soda) and sodium bicarbonate (baking soda),

receive far higher ratings _han any of the other compounds.
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3.3.4 A Neutralization Method Using an Insoluble Reactant

All of the chemicals discussed ia the preceding subsections are highly

soluble in water; to our knowledge, insoluble neutralizing agents have not

been used for N204 waste disposal. A possible advantage of the use of an

insoluble compound is the fact that there would be no possibilityof accumu-

lattionof excess neutralization agent in the disposal pond waters - such

accumulation could pose a problem in terms of finaldisposal, especially if

a need should arise for immediate withdrawal of liquidfrom the pond. A

laboratory scale experimental program was performed to evaluate the pos-

sibilityof using a water-insoluble neutralizationagent.

The cheapest and most readily available neutralizing agent in this category

is calcium carbonate, CaCO 3, which can be purchased as limestone or marble

chips. The basic operating principles are shown in the sketch below. A layer

of CaCO 3 chips is established on the bottom of the pond, and N204 is fed to the

aqueous layer. As time proceeds, only that amount of CaCO 3 is taken into the

pond waters as is required for neutralizationof the N204. After neutralization,

the solution would be very near neutrality {ph 7).

#/ .... NoO 4

_,..v.;.-_..-,-:.,..._--.,_~_....,_: ,._;,,, .... ""/'_-'--- C aCO 3

A receiver vessel layered with CaCO 3 and water was prepared in the

laboratory. To this solution was added N204. The water temperature and pH

were moztitored and the time and dilution necessary to safely dispose of ziven

quantities of N20 4 without seriously raising temperatures were determi,md.

In the first experiment, the receiver contained two liters of tap water,

and '-'50 gin. of finely powdered CaCO 3 was layered on the bottom to a depth

of 5 ram. In a separate flask 25 ml. of N204 was placed. A l/8" glass tube

was inserted into a rubber stopper which was fitted to the flask. The other

end of the glass tube was inserted into the receiver to a level Just alx_ve the

CaCO 3 tFigure 3..q. 1). The flask containing the N20 4 was heated to 35°C

with a water bath and N204 vapor and liquid proceeded into the receiver for



.I. il

CaCO 3

_ Water bath

Figure 3.3. l Addition of N204 to water over calcium carbonnte.
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15 minutes. The pH of the receiver solution dropped from 8.0 to 1.0 over

this period of time while the temperature varied slightlyfrom 21 to 22°C.

The bubbles of NO2-N204 were.large, however, and a red cloud vJas observed

over the receiver.

A second experiment was performed in which the only change made was

a decrease in the rate of N204 addition. The amount of red gas over the re-

ceiver was considerably diminished; time required to feed the N204 was 30

minutes.

A third experiment was conducted similar to the preceding, but with an im-

portant exception. Limestone chips 0.75 inches in diameter were used in place

of the finelypowdered CaCO 3. The other parameters were as follows:

Weight of CaCO 3 400 g.

Volume of HoO 1.8 1.
m

Volume of N204 added 25 ml.

Time for N204 addition 20 minutes.

Again, large bubblies of NO 2 - N2G 4 ,vere observed and a small amount

of red gas INO 2) was observed over the receiver. Additional dota are presented

in Tab)e 3.3.3.

l

TABLE 3.3.3

RESULTS OF EXPERI_IENT 3
CALCIUM CARBONATE NEUTRALIZATION

Time Receiver

Mins. p.H Te roperature

0 3.5 2l°C

I0 I.0 2l°C

15 I.0 2l°C

20 I.0 2l°C

Comment

Contact of NoO.
vapor with _tgr

Vigorous CO 2
evolution

24 hr. 4.0 19°C End of CO O
evolution "
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The data indicated that a greater dissolution rate of NO2-N204 would have

to be obtained before this disposal approach could be considered. A further

series of experiments was therefore conducted in which the N20 4 was delivered

Co the receiver using spargers with 10 to 15 micron porosity, to facilitate the

production of small bubbles and thus allow a greater rate of dissolution.

A 500 rot. r.b. flask was filled with 50 ml. of N204. Two glc:_ tubes

were inserted in a rubber stopper and the stopper in turn inserted in the open-

ing in the flask. These tubes were attached to two spargers (3 cm. in diam-

eter) containing fritted glass outlets. These spargers were in turn inserted

into a receiver bath containing two liters of tap water in a crystallizing dish

10 cm, high and 19 era. in diameter. Five hundred gms, of marble chips

were layered on the bottom of the crystallizing dish. The N204 was allowed

to vaporize, pass through the tubes and spargers and into the water in the

receiving vessel. All 50 ml. of N20 4 were added over five hours and the ptt

dropped from 8. I to 1.2 with essentially no change in temperature. At the end

of eight hours, the solution was essenti'_lly.neut_'alized (Table 3.3.4),

In Experiment 5, the N204 was heated in a water bath to 35°C to speed

passage of N20 4 into the receiver. This time the pH changed from 8.1 to 1.1

in two hours and twenty minutes and again no rise in temperature was noted.

At the end of three hours and twenty minutes, the pH was neutral (Table 3.3.5).

At no time in these experiments was a red gas observed above the liquid in

the receiver. Only clear bubbling CO O was observed.

A third experime:_t was conducted in which the marble chips were re-

moved and 50 ml. of N20 4 was added to plain tap water through the same pre-

viously described system. At room temperature, the addition was complete

in 400 minutes and the pH was less than 0. A slight rise in temperature was

noted, and again no red gas indicating NO 2 w:ls observed emanating from the

water in the receiver flask (Table ;_. 3.6).

A final experiment was conducted in which a water bath at 35°C was

used to heat the flask containing 50 ml. of N204. This treatment resulted in

a faster flow of N20 4 into the receiver vessel. The data are shown in Table

3.3.7. Again, no red gas indicating NO 2 was observed above the water level

in the receiver.

!

I

11
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Time
Mins.

20

60

300

480

TABLE 3.3.4

RESULTS OF EXPERIMENT 4

CALCIUM CARBONATE NEUTR ALIZ ATION

Receiver

pH Temperature(°C) Comment

0 8.1 23.5 Start

10 8.0 23.5 NOo, N`)O 4 contacts water
in recei_er

3.0 23.0 CO,) evolution starts
M

1.5 23.0

1.2 23.0 End of N204 addition

6.6 23.5 End of CO., evolution
m

TABLE 3.3.5

RESULTS OF EXPERIMENT 5

CALCIUM CARBONATE N?UTRALIZATION

Time
Mins.

0

19

30 1. o .,o 5

60 0.8 22.0

120 0.8 22.0

140 1.1 23.0

2O0 7. I 23.0

Receiver

pH Temperature (°C) Comment

8. I 23.0 Start

6.5 23.0 NO 2, N_O 4 contncts water
in recetver

(:0 2 evolution starts

End of CO o evolution
D
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TABLE 3.3.6

ADDITION O F N204

Time

.Mins. pH

0 6.5

15 2.5

30 I.

60 I. 5

120 O, 5

400 _ 0

Receiver

Temperature

23.5

23.5

23.5

23.5

24.0

VA POR TO WA TE R

Comment

Start

Receiver water has blue
tint

25.0 End of N20 4 addition

TABLE 3.3.7

ADDITION OF N20 4 VAPOR AT 35°C TO WATER

Time Receiver

Mins. pH Temperatu re

0 6.5 :23.5

15 1.3 24.0

30 1. _ 25.0

120 ._ 0 26.5

Comment

5tart

End of N204 addition
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TABLE 3.3.8

ADDITION OF 10,% HY_DRAZINE SOLUTION TO 2.5,_

AQUEOUS SOLUTION OF N204

Addition time

Temperature increase

pH after addition

Ex'periment 6 Experiment 7

2.5 minutes 3.0 minutes

20°C 25°C

6.6 6.5

After completion of addition of N20 4 in these t_vo e.'cperiments, each solu-

tion was neutralized with 500 ml. of 10% aqueous h vdrazine. The results are

shown In Table 3.3.3. During neutralization vigorous gasecus effluence was

noted but no brown gas was seen. After neutralization the solution had an amber

color.

3.3.5 Conclusions

In terms of evaluating chemical means of destroying N204, a brief quau-

ti.tativeexample is probably in order. We have estimated thatapproximately

135 pounds of N204 willbe vaporized during the loading of the Space Shuttle

oxidizer tanks.£ To dispose of this amount of N204 in aqueous solution by neu-

tralizationwith NaHCO 3, 165 Ibs. of the neutralizing agent would be required

at a cost of roughly $22. The cost figure seems reasonable but the storage and

handling of such large quantities of chemical render_.thismethod unattractive.

Also, this neutralizationwould produce approximately 166 Ibs. of sodium nitrate

and sod'urn nitrite, In order to maintain the same environmental standards as

a sewage plant, this material would have to be diluted with approximately 6.7 x

109 gallons of water before being discharged from the pond.

Thus v _ have seen that there are three primary difficultieswith chemical

neutralization_

I. The evolution of large quantities of NO during dilutionof liquid

N204 with water.

2. The quantities of neutralization chemicals required.

3. The problem of ultimate disposal of the soluble nitratesand nitrites.

I. Final Report, Phase 5, Contract NAS I0-8399.

nology Report No. ME-76-1, February 1976.

Florida Institute of Tech-
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The first problem might be resolved by diluting the N204 with water that

has already been treated with an excess of the neutralization chemical, and our

work on vapor scrubbers reported in Section 3.9 showed that NO generation

could be avoided in that case by addition of sufficient caustic soda to the scrub-

bing solution. An excess of these chemicals in the dispusal pond might ag-

gravate the ultimate disposal problem, however. Additional work on this pro-

blem is strongly indicated.

The second problem is unavoidable wt,.l this disposal method.

The third _.:oblem is an especially interesting one. The nitrates and ni-

trites are potentially valuable as plant nutrients, but not especially useful in

the form that would be found in the pond. There is no known way that they can

be precipitated out of the pond waters, and to discharge the pond waters to any

lake or stream without remo,:i._ these high nutrient concentrations would be

environmentally unacceptable. One approach would be to +.ransferthe pond

water to large evaporation trays, and then either dispose of the residue in a land

fillor attempt to use itas fertilizer, in thisform itis stillnot a very useful

fertilizer,however. Another approach is to grow water plants in the pond it-

self, where they .w_oulduse the nutrients and purify the water. These plants

would be peri_icaiiy h_rvested, dried, and either used as organic fertilizeror

as feedstocl_for a small methane generator. This lattersolution is the subject

of the following section.
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BIOLOGICAL PROCESSES

The most promising ultimate disposal method for the nitrates and nitrites

that result when N204 is treated, or added to water and neutralized, is assimilation

by growing plants. In this way_ the nitrogen is used in a controllable manner and

the uncertainties associated with discharging a potentially harmful _and potentially

beneficir3) substance to open bodies of water, flowing stre'uns, or groundwater

are avoided. Especially attractive is the use of water plants, periodically harvested,

in a carefully controlled disposal pond, Long term investigations on one such

pond are being carried out by us as this Handbook is being _'rit'ten, and will be
1

covered by future contract reports.

. Co_._racts NAS 10-8399 _'_.ndNAS 10-9166.
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3.5 GAMMA IRRADIATION

The irradiation of aqueous solutions to decompose chemical compounds in

solution was described in Section 2.8, where the results of experiments involving

MMH and N2H 4 were presented. This method is also appliable to aqueous sol-

utions of N204 (or actually HNO 3, which results when N20 4 and H20 are com-

bined).

The results are shown in Table 3.5.1. The NO_ concentrations were re-

duced 12-14% in 1 1/4 hours, from various concentration levels.

The decomposition products include N 2 and oxides of nitrogen. In a closed

system, ,_sin the screw-capped bottle, the evolved NO x will collect in the gas-

eous phase and set up an equilibrium with the liquid. Itmay be assumed that

complete destruction by continued gamma radiation will not be easily achieved

due to thisequilibrium. Sufficientirradiationof NO x to form N 2 may require

an uneconomically long period of time.

TABLE 3.5.1

GAMMA RADIATION EXPERIMENTAL RESULTS

Test Dose in Time N20 4
Rads Irradiated ppm

(as NO 3)

Reduction

from Control

2 0 _control_ 0 I$,480
1,000 74.5 rain 16,230 11.9

0 _ 1,925

10_ 45 see 1,870 2.9
10_ 7.5 min 1,760 _.6
10 v 74.5 min 1,650 14,3

v_t 0 50,600

I0: 45 see 48,400 4.3
10_ 7.5 min 44,000 13
10_ 74.5 rain Bottle leaked
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3.6 INCINERATION

3.6. 1 Introduction

Nitrogen tetroxide can be consumed in combustion with a hydrocarbon

fuel, usually in the presense of air. Currently, the main application of incin-

eration for N.>O4 disposal involves the use of flare burners on vent stacks. In

these burners, propane and nitrogen tetroxide vapors mLx at the exit plane of

the burner and react; the burner is operated in a fuel rich mode and the atmos-

pheric air surrounding the primary reaction zone apparently reacts with the ex-

cess fuel to prevent undesirable hydrocarbon emissions. These units are in

use both in portabte, trailer-mounted systems and in permanent facilities.

Aqueous solutions of N204 _HNO 3) have also been incinerated at various

times in large incinerators such as the one in use at Cape Csnaveral .Air Force

Station; see Section 2.9.2.

In addition to these units, the Marquardt Sudden Expansion (SUE) burner

discussed in Section 2.9 has also been used experimentally for the destruction

of raw liquid N204.

The JANNAF Propulsion Committee's recommendation for disposal of

large quantities of NoO 4 was open pit incineration; see Section 3.1.

3.6.2 Thermochemical Description

N204 decomposes relatively easily and supports combustion, With proper

feed rates and the use of auxiliaryfuels combustibility is readily controllable,

Temperature can be controlled by varying the err/fuel ratio. A minimu.m tem-

perature must be maintained for satisfactory decomposition of wastes; rates of

reaction are increased rapidly by higher temperatures. Combustion at high

temperatures, however, converts atmospheric N 2 to NO. Thi:3NO is oxidized,

either slowly by 02 or rapidly by O 3, to produce NO 2.

The degree of turbulence in the reaction zone signif',cantlyaffects the in-

cinerator pe-rformance. Intimate mixing of the fuel and ",¢90is required for
m

completeness of combustion. Ideally. adequate destruction ot waste propellant

is the reduction of N.204 to N 2 with minimum NO formation. Effectiveness is

judged by the combustion results as indicated by stack effluentanalysis.
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Santoleri and Ross I have discussed a number of methods used to control

NO x emissions during combustion processes. An equilibrium burner with good

internal recirculation characteristics produces low NO levels because the mix-
x

ing at equilibrium leaves littleoxygen for nitrogen oxidation. Another technique

uses two stage combustion where the fuel isburned with less than theoretical

air in r.heprimary stage. Air is injected intothe second stage to burn the re-

mainder of the fuel. A third procedure is flue gas recirculation. The_gas at

the end of combustion is recirculated into the combustion chamber. The result

is lower flame temperature and oxygen concentration because of dilutionwith

relativeIF inert gas.

The theoreticalcompositions of the products of combustion of various

combinations of NoO 4, natural gas, propane and air have been computed by
-- O

the MRrquardt Company.- These computations were based on NASA SP-273,

"Computer Progr_n for Calculation of Complex Chemical Equilibrium Com-

positions, Rocket Performance, Incident and Reflected Shocks, and Chapman-

Jouguet Detonations" by Sanford Gordon and Bonnie J. _IcBride. The results

•,re reproduced in Figures 3.6.1 through 3.6.3 as useful guidelines for future

equipment evaluation. Fi_o_re 3.6.2 indicates that satisfactory,operation c_tn

be obtained at over-stoiohiornetric (fuel-rich)conditio_Iswith littleexcess

air present. Thus, a mass ratio of propane to N20 4 which is somewhat less

than 0.45 results in less than 200 parts per million of NO production.

Figure 3.6.2 also shows that hydrogen is produced from traces up to

4 x 105 pprn. Carbon monoxide (CO) is produced from traces up to 3.5 x 105

ppm; nitricoxide and nitrogen dioxide from traces up to over 2 x I0"tppm.

At the stoichiometric ratio of propane to N._O4, 40,000 ppm H2, 140,000 pDm

CO, and 15,000 ppm NO x are formed.

Operation of an incinerator at lean fuel/N20 4 ratios with high air/fuel

ratios is not feasible due to the Io_ temperature and consequent abundant

NO x gas release intothe atmosphere. For this reason, under-stoichiometric

t. Santoleri, J.J. and Ross, R.D. : "Fast Reaction Burner Designs Minimize

NO.. Emissions. " Report No. 73-:_03 Thermal Research and Engineering Corp.,
Conshohochen, Pa.

P,. Hutson, Joel E. : "Toxic Waste Burner Evaluation. " Final Report, AFRPL

Contract No. F 04({II-T3-C-000?, November 197._. Marquardt Co. Report No.
S-1271.

' _ ] ........._ ............ -I-- rill ........................... 1
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burning with N204 and air is not considered practical. (The results shown

in Figure 3.6.3 seem to be primarily dilution effects rather than thermochem-

ical effec_

Operation at fuel/N204 ratios above stoichiometric, and with relatively

high fuel/air ratio and higher temperature,, is more desirable. Under these

conditions more fuel is used and more CO and H2 generated, but the amount

of NO x formed is considerably reduced.

Additional discussion of incinerators and formation of oxides of nitrogen

was presented in Section 2.9. One aspect of combustion not discus3ed in that

section might be especially significantin the case of destruction of an oxidizer,

however: the possibilityof formation of reactive hydrocarbons. For the com-

plete destruction of an oxidizer, itis necessary for an incinerator to operate

at fuel-rich conditions, which favor the forrnation of intermediate products that

can be released to the atmosphere. The complete combustion of a hydrocarbon

result:_in the formation of carbon dioxide and water,

m m
CnH m ÷ (n _-_-)0 2 _ nCO 2 _ H20,

but the reaction of 'he same hydrocarbon with insufficientoxygen results ia

the formation of an aldehyde a_d an alkyl radical,

HC ,-O _ RCHO .-R"

The aldehyde, RCHO, is a smog-former, and the alkyl radical can react with

another oxygen molecule to form a peroxyaikyt radical,

R" +0_ _ RO,-,"

which in turn tends to oxidize nitricoxide to nitrogen dioxide,

RO.*_-NO _ RO" '-NOo

Although the entire complex ._cquence of chemical and photochemical reactio._s

that give rise to smog is stilllargely t_nknown, these reactions are thought to
3

be some of the most important. Their severity is somewhat diminished _n

our case by the fact that the reactivityof exhaust emissions is known to be very

low i,'_has where propane or methane is the parent fuel.

,, | ,

3. Obert, Edward F. : Internal Combustion En$ines and Air Pollution.
Inte.'_Educational Publishers, New York, 1973. (Pages 363-373,) -='-

k., •
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o

The report by Hutson 4 also describes a short series of exl_. rlments on

N204 destruction in the SUE burner. N204 flow rates in these teats were as

high as 0.313 pounds per second. Although the overall results of these runs

were deemed "Ir, conclusive" by the author due to the small number of runs

that were reader it was noted that colorless and odorless exhaust emissions

were obtained in two ways.

i. '_By ... achieving rich combustion with C3H 8 and .'dr only, then

simultaneously bringing in N204, increasing C3H 8, and decreasing

_.ir until sufficient fuel was available to theoretically provide over-

stolchiometric burning of both air and N204. ,,5

2. "at a constant CzH8/N204 ratio and decreasin_ amounts of air ....

As air flow was reduced ... the exhaust cleaned up until no dis-

color_tion or odor was noticed. ,,5

In neither case, however, was it possible tc bring NO emissions within the range

of the instrumentation. By way of explanation of the high NO readings, the au-

thor points out that 'There are several possibilities such as instrument error in

NO measurements or flow rate errors In propellant meters. ,,6 There are also

other possibilities more closely related to the actual incinerator performance.

A comment is probably in order at this point regarding discrepancies be-

t_veen theoretical and observed products of combustion. There is no reason to

expect that the equilibrium compositions of Figures 3.6.1 through 3.6.3 will

necessarily be achieved in any _art':cular incinerator. In particular, failure to

achieve the desired results can be caused by the following:

1. Failure to achieve equilibrium, through poor mixing, short stay

times, etc. The theoretical calculations are made on the basis

of all reactions reaching completion.

2. Non-uniform incinerator flow conditions. Measured inlet flow rates

give average values for mixture ratios; local variations could result

in different product compositions at different points in the inc'iner-

atot. In particular, local hot spots can result in large NO fcrma-

lion in almost any sort of air-breathing combustio,_ chamber.

.

5.

6.

Op. cit., page 31

Op. cit., page 32

Op. cit., page 33

__ . _-
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We are not presenting any conclusions regarding the SUE burner's performance

in this respect, but merely recording some of the possibilities. Recommenda-

tions for further work made in the Marquardt report include "re-evaluation of

the incineration configuration and Injection system. "

Measurements of NO emissions were also made by Pan American on
x

the Thermal Research incinerator at Cape Canaveral Air Force Station. During

combustion of aqueous solutions of N2C_ , NO x concentrations tanging from 250
i

ppm to 7990 ppm were measured.

3.t;.3 Flare t_urners

A proprietary Martin-Marietta Corp. flare burner for destruction of waste

oxidizer vapors, designed and developed during the late 1960's, has been in-

stalled at the Johnson Space Center, Vandenberg Air Force Base, and White

Sands Test Facility, as wetl "xs at Martin-Marietta's Denver Division. The

unit was originally designed for use at Titan II sites, and it seems likely that a

number are also currently located at these installations.

This unit consists of a cylinder _one standard configuration is 8" diameter

by 3' long} containing a plenum into which propane antt waste N204 vapors are

injected, and a burner head. Tt_e plenum is designed in such a way that *.he pro-

pane and oxidizer don't come into contact with each other until they reach the

exit pinkie of the burner. A wind shroud protects the head from flame out. A

continuous pilot is provided at the top of the burner head to ignite the gas mix-

ture. Approximately 10 pounds per minute of N204 can be destroyed in the case

of the _ inch configuration.

The unit is basically similar in its princ(!,;.-s, of operation to the incin-

erators discussed in the preceding subsection and Section 2.9. Fundamental

differences are that the combustion zone is external, rather than internal; there

is no control over the air supply; and there ta less latitude for refinement of the

deslgn (combustion chamber par.'tmeters, nozzles, secondary air, etc.). Test-

lug. is complicated by the fact that combustion is accompanied by tmcontrolled

7. A series of internal reports of the Guided Missile Range Division, Pan
American World Airways, dated 8 October 1970, 21_ February 1971, and 3
J-muary 1972, regarding operation of the Hypergolic Propellants Incinerator
at Cape Kennedy Air Force Station. _
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dilution, and that the effluent is unconfined, giving rise to problems regarding

where samples should be taken. On the other hand, the characteristic of a cen-

tral C3Hs/N204 flame, with an unlimited quantity of air available surrounding

the flame, might well constitute a faborable environment for N204 destruction

that would be difficult to duplicate in an internal combustion incinerator.

The stoiehiometric equation for reaction of N204 with C3tt 8 is

5 N204 +2C3H 8 _ 6CO 2 ÷8H20+5 N2

The limitations of this sort of equation have been discussed extensively in

earlier sections on incineration, including the need for fuel-rich operation to

assure complete destruction of N204. In addition to reaction, however, dis-

sociation is of prime importance in discussing N204 destruction.

At atmospheric pressure, the dissociation of N204,

N204 _ 2NO 2,

is essentially complete at 200°C. At temperatures in this range and higher,

the Nee in turn dissociates
m,

2NO 2 _ 2NO + O2

2NO 2 ---.o N 2 ÷oO 2

If other constituents are predominantly oxidizing, the first equation is

most important, but if they are strongly reducing the second dissociation pre-

dominates. In other words, thel rich combustion favors the desirable NO o

dissociation, as opposed to the fvrmation of NO. (These dissociation consid-

erations were implicit in the theoretical predictions discussed in the preceding

subsection.

The only published data on effluents from these flare burners resulted
8

from a test program conducted at White Sands Test Facility several years a_o.

"Samples were obtained simply by holding an inverted funnel connected.., to

an evacuated 3-liter pressure bottle over the most dense portion of the flame,"

and were analyzed in an infrared speetropnotometer having detection limits of

1.0 ppm NO, 0.04 ppm NO 2, 1o0 ppm CO, 0.1 ppm CO 2, 0.1 ppm HC, 100 ppm

8. Smith, Irwin D. : Nitrogen Tetroxtde Disposal Unit Combustion P/-oducts.
NASA TN D-3905, May 1967.
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H20. Results reported were simply that in a lean operating mode, NO and NO 2

were detected, whereas in the proper fuel-rich mode only H20, CO 2 and HC

were detected. No carbon monoxide was detected in any of the samples..An

interesting statement was that "No attempt was made to obtain samples that

could be quantitatively analyzed to determine the exact output of the unit. Since

wind conditions at the White Sands Test Facility are very erratic, sarnpllng for

precise quantitative analysis would be difficult and impractical. "

We believe that these results illustrate our earlier statements regarding

the difficulty, of collecting meaningful data from this sort of external combus-

tion device. The absence of both CO and NO from the same sample seems some-

what unlikely, except as a result of very considerable dilution. Perhaps, how-

ever, these results can be taken as evidence that the flare burner does not have

any particularly severe NO problems in the fuel-rich mode.

While this result seems unlikely it is certainly not inconceivable, and

could be a result of the more or less stratified nature of the burner's com-
e

bustion zone, with fuel .and waste oxidizer in the center and a second oxidizer

(air) surrounding this region. It is possible that combustion here is sequential

in nature, involving first N204 and excess fuel with air enterin/" afte_r complete

N204 destruction but not too late to effectively oxidize the large amount of CO

that must certainly form during primary combustion. Even so, however, some

amount of nitric oxide formation seems inequitable.

3.t_.4 Conclusions

In spite of the rather widespread application of incineration as a means of

disposing of nitrogen tetroxide, it is still an extremely difficult method to eval-

uate. Theoretical consi_erations show that it should be possible to achieve very

low NO x concentrations in the exhaust of such an incinerator, ltowever, fuel-

rich combustion is necessary if formation of NO is to be prevented. Fuel-rich

combustion is almost always less environmentally acceptable than lean com-

bustion because of the formation of partial products such as CO, ketones, alde-

hydes, olefins, etc., although use of methane as the fuel will eliminate or min-

imize most of these problems.

........ "iT _ ...... '111| -" 1
.......... ' ,;;_. '.'_.*,_-"_,dilL_.,_l_.."t:_ '''. ,' ,_ _ ._-
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Itseems possible that air could be introduced downstream of the primary

combustion zone in such a way as to react with these partialproducts to form

harmless (CO 2, H20) finalproducts, yet without formation of NO due to exces-

sive heating of the air itself;both the SUE burner and the MMC flare burner are

configured such as to perhaps be capable of achieving this goal. Experimental

programs carried out with both units have been inconclusive, however. The

SUE test program w-s terminated before low NO emissions were achieved; the

flare burner measurements were made on samples thathad been diluted by un-

determined quantities of air, and the analyses performed on the samples were

rather minimal.

We need hardly mention, however, that open methane flames have been

used for residential heating and cooking for generations without causing air pol-

lution problems even at the point of application, and hence concern with fuel-

rich combustion in open methane flames is probably not of great importance.

It does seam clear that both the flare burner and the SUE burner, as well

as large incinerators, are capable of producing colorless _no NO 2) effluents,

and hence are at least comparable to water scrubbing, water dilution of liquid

N204, and other processes where the chief problem is formation of quantities

of NO.
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3.7 CATALYTIC DECOMPOSITION

The basic principles of catalyticdecomposition were discussed in Section

2.10. This method is applicable to nitrogen tetroxide as well as to the hydr:tzine

fuels.

In the course of trying to learn more about the practicalityof catalytic

decomposition, we contacted two manufacturers who were willing to discuss

catalyticdecomposition of nitrogen tetroxide. W.R. Grace and Co. of Baltimore,

Maryland, wrote that '_204 ,_ndHNO 3 pose the most difficultyin decomposition.

A catalyst containing pl'_inum or palladium used in a reducing atmosphere of

hydrogen or carbon monoxide would probably do the Job."

Engelhard Industries, Murry Hill, New Jersey, suggested that catalytic

decomposition using a palladium catalyst would be feasible. Similar methods

are in use at many nitricacld plants throughout the country to "decolorize" the

nitric acid tallgas at_ reduce the NO x concentrntion. In the manufacture of

nitricacid, the firststep is the catalytic air oxidation of ammonia to form NO,

which reacts with residual o.xTgen to form Nee which is subsequently absorbed
m

in water to form nitricacld ,'rodadditional NO. The gases leaving the top of the

column consist of mixed nitrogen oxides, oxygen, and nitrogen. These high

pressure gases _re passed through an expander for power recovery before dis-

charge to the atmosphere, and quite commonly paIladlum or platinum catalysts

have been added upstream of the expnnder to decompose the Nee to NO nnd Oo,
m

thus increasing the power recovery as a result of the energy release during

decomposition. An ,'tddedbenefit is the elimination of the characteristic red

plume often associated with nitric acid plants. With the edvent of air polution

laws, these systems were modified by the addition of "abaters" in which fuel -

usually methane - is added to the gas stream upstream of the catalyst bed, as

shown in Figure 3.7. I. The fuel reacts with the remaining 02, with enough

excess fuel to create reducing conditions so thatdecomposition of NO 2 to N o.

and 02 is favored. With this scheme, totalNO x emissions are reduced to the

100 - 1000 ppm range. Engelhaxd has developed ,'mimproved version of this

scheme, described by Gillespie et alI, which is s,'tidto overcome problems of

1. Giliespie, G.R._ Boyum, A.A.: and Collins, M.F.: "Catalytic Purifi-
cation of Nitric Acid Tail Gas: A New Approach. " Presented at the AI ChE

Annual Meeting, San Fr.'tncisco, December 2, 1971.

- i,,_a



198

I
c.

im

o_

_ol

El
ol

[-

f
4,.

Figurc 3.7.1 Flow diagram for" typical nitric acid plant
with abater. From Gtllespie et al, 1971.



199

catalyst poisoning, rate limitations, thermM limitations, poor mixing, and exces-

sive fuel/O 2 ratios that existed with earlier systems. The system, shown in

Figure 3.7.2, uses a spherical palladium catalyst and relies on fuel desulfuriza-

tion, ebater bypass for start-up and shut-down, and careful control of temper-

attires and flow rates. Reliable operation with total effluent NO x concentrations

below 200 ppm is claimed.

The use of processes involving dry, catalyzed reaction to "scrub" oxides

of nitrogen from nitric acid plant emissions has also seen considerable develop-

ment in Japan, where regulation_ regarding atmospheric releases of NO x are

also quite stringent. Two dry catalytic processes using ammonia to reduce the

oxides of nitrogen, in the presence of proprietary catalysts, have come to our

attention. The Hitachi Zosen process is said to reduce the stream from 350-ppm

to 10 ppm "and less", while the Sumitomo process is said to accomplish an

80-90% reduction in a stream initially' at 200-500 ppm - a reduction to about 40

pnm. Cost of a Hitachi-Zosen system fcr 200,000 M3/hr total flow is about

$5 million, with an operating cost of about $2.5 million per year, based on 8,000

hours per year operation. Cost of the Sumitomo system is $270,000 - $330,000

per 10,000 M3/hr. capacity, o" It is not known at this time v_hether this approach

is bei_lg developed by anyone in this country, or how the costs would scale to a

smaller system.

2. Ushio, S. : "Japan's NO x Cleanup Routes."
July 21, 1975, pages 70-71. "

Chemical Engineering,
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3.8 PLASMA ARC AND MICROWAVE PLASMA DECOI_.IPOSITION

These methods were described in Section 2. II with regard to the decom-

position of hydrazlne fuels. They should be equally as applicable to nitrogen

tetcoxide. We are not aware of any experimental work having been performed •

to date that actually involved either hydrazine fuels or nitrogen tetroxide.
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3.9 ABSORPTION OF VAPOR

3.9.1 Introduction

In cases where nitrogen tetroxide vent streams are treated rather than

being discharged directly to the atmosphere, the most common treatment to

date has been water scrubbing, in which the N20 4 vapors are absorbed in water

in a packed column scrubber of some sort. In some cases, a solution of sodium

bicarbonate (NaHCO 3) or other alkali has been used in place of water. Some of

the scrubbers that have been used, along with theoretical aspects and design

considerations, are presented in Appendix D.

Scrubbing of NO 2 - N204 presents formidable problems because of the

low solubility of these agents in water, and also because NO is formed during

the absorption of NO 2 and N20_ in water according to the following equation:

3 NO 2 (or 3/2 N204) + H20 _ 2HNO 3 + NO

As nitric oxide is only sparingly soluble in water, oxidation to NO 2 must

take place in the gab phase before significant absorption of the evolved nitric

oxide can occur whenever more than a few ppm of NO 2 are being absorbed.

The oxidation of NO (the rate controlling step in the absorption of low concen-

trations of nitrogen oxides) is concentration-dependent, as seen in Table3.9.1,

which shows the time required for half the NO present in air at various con-

centrations to be oxidized to NO2 at standard temperature and pressure.

TABLE 3.9.1

OXIDATION RATE OF NO IN AIR

NO conc. Time for half NO

in air, to be oxidized

to NO 2, rainppm

20,000 0. 175
10,000 0.35

1 o000 3.5
100 35

10 350 (5.84 hr)
1 2500 (58.4 hr)

...... - . . ,., , ' ...... i .... --i ......... _ll
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Whereas it takes 10 seconds for half the NO to be oxidized to NO 2 when

the concentration is 2% by volume in air, it takes nearly 60 hours for half the

NO to be oxidized when the original concentration is 1 ppm. The oxidation rate

for all concentrations increases at higher pressure.

It may t_e concluded from these facts that, for casesin which water is

used for scrubbing:

1. multistage absorption equipment with long gas retention times for

oxidation of NO between absorption stages !s reauired for high ef-

ficiency absorption of nitrogen oxides from flowing air streams;

2. it is impossible to reduce effluent concentrations below a few hun-

dred parts per million NO x in single stage absorption equipment of

practical dimension when the entering concentration is in the per-

cent range;

3. the effluent NO x concentration in multi-stage equipment tends to be

insensitive to increases in inlet concentration because of the greatly

decreased oxidation times associated with higher concentrations of

NO.

Experiments conducted in 8.5 inch diameter counter current tower packed

with 5 feet of 1/2 inch Berl Saddles indicated that no permanent improvement In

NO removal results from recirculating an alkaline scrubbing soltltion because
x

of the inhibitory effect of accumulations of NaNO 2 on the absorption efficiency
J

of the resulting mixture.

The slow oxidation of NO in air can be improved by adding an oxidant such

as KMnO 4 to the absorption liquid so that NO formed during the hydration of NO 2

can be oxidized in the liquid phase (and made.water soluble) before it escapes

from solution because of its limited solubility, When KMnO 4 was added to the

alkaline scrubbing liquor, absorbability increased by a factor of 20% for the

cperating conditions eutployed. 2 The principal problem associated with the use

of K._lnO 4 in absorber scrubbing liquor, in addition to the high cost of the chem-

ical, is the formation of an insoluble MnO 4 precipitate which can cause fouling

of the absorber packings.

1. First, N.W., and Viles, J. 5., Jr., : "Cleaning of Stack Gases Contain-
ing High Concentrations of Nitrogen Oxides. " Journal of the Air Pollution Con-

trol Association, Volume 2 1, 122-127 (197l).

2. I_id.
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A KMnO 4 process that is being used on a commercial basis in Japan is the

Mltsubishi Kakoki Kaisha process. The system is quite complex, consisting, in

addition to the absorption tower, of thickener, filter, evaporator, crystallizer,

separators, dryer, and electrolytic cell. It is said to reduce NO x concentra-

tions from 200 ppm to 50 ppm, at a system cost of $5 million and operating costs

of $1.1 million per year for a 200,000 M3/hr. system. 3

Other chemicals can also be used in the scrubber liquor to prevent NO for-

mation during the absorption of N20 4 vapors. Some of these chemicals - espe-

cially sodium hydroxide, ammoniu_ hydroxide, and triethanolamine (TEA) -

were the subject of an extensive test program that is described in later portions

of this section.

Still another approach involves the use of a strong gaseous oxidant between

the stages of a multistage scrubber. Ushio reported that the Chiyoda Chemical

Engineering and Construction Company in Japan is _m ricing on an ozone process

that converts NO effluent to NO 2, which can then be sc_.ubbed in a second ab-

so_'ptlon stage. A conceptual design oi a syste,_ baced o- this concept is pre-

sented in subsection 3.9.3.

3.9.2 Water Scrubbing E._eriments

First and Viles described the results of a series of tests performed on a

16-stage cross-flow NO x gas absorber containing 37 micron diameter curled
5

glass packing. Details of the unit are shown in Figure 3.9.1.

The manufacturer was the Buffalo Forge Company, and the overall con-

figuration is quite similar to that of the Hamilton Standard Gemini and Saturn

scrubbers, which were also fabricated by Buffalo Forge. (See Appendix D. )

Each absorption stage ham a face area of 1.25 sq. ft. and contained a 4 inch

depth of Owens-Coming K-1!5 ctn'led glass fibers packed to a density of 2.3

pounds per cubic foot. Fifteen stages were wetted with nozzles having an

3. Ushio, S. : "Japan's NO x
21, 1975, pages 70-71.

4. Ibid.

5, Loc. cir.

Cleaning Routes. " Chemical Engineering, July
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orifice diameter of 0. 170 inches and delivering 2.5 g/minute at 8 psi. The

sL, cteenth stage was operated dry and served as an eliminator to prevent emis-

sion of airborne droplets. The nozzles were serviced from a fresh water

supply and waste water drained from the sumps connecting the cells to the bottom

of the absorber casing. It was intended that the liquid would rise in the sumps

to a level well above the drainage holes leading from the compartments and

thereby provide effective air seals between the stages.

Performance tests were conducted under a variety of conditions. Pro-

visions were made to measure temperature, flow rate, and the composition

of gas and liquid streams entering and leaving the absorber. The following

results were obtained:

1. Pure N20 4 - NO 2 mL,_tures at gas temperatures from 78 to 17.3 °

and scrubbing water temperatures from 40 to 74 ° were reduced to

30 ppm at exit from the scrubber because with little or no inert

gas present, the gas absorber approximated an infinite-retention-

time reactor after the flowing.gas volume shrank to very small

value s.

2. In tests in which conditions were held constant except for NO 2 inlet

concentration, outlet concentration appeared to be largely unaffected

by very large changes in inlet concentration; e.g., in one series of

tests a thirteen-fold increase in NO 2 inlet concentration (2000 to

26,700 ppm) produced no significant increase at the outlet. When

outlet concentration was plotted on log paper against average gas

velocity through the scrubber, the residual concentration appeared

to be approximately proportional to the square of the gas flow

velocity.

3. The outlet NO 2 concentration increased with a rise in water tem-

perature.

4. Pressure of several atmospheres would be required to produce a

marked improvement in absorption at low concentrations of NO 2.

We concluded from the First and Vtles paper, and other sources, that

multistage gas absorption of 1 - 50_ _ltrlc oxide, nitrogen dioxide, and nitrogen

tetroxide from air with water or caustic solutions can produce colorless stack

discharges. The rate at which NO is oxidized to NO 2 in the gas phase and the

ll-T ......... 1- "|- ....... -=l
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solubility rate of NO 2 in water or sol,,ltion are highly concentration dependent so

that reduction of emissions of nitrogen oxides below approximately 200 ppm ap-

pears to be impractical using current methods.

3.9.3 Multistage Absorption with Interstage Oxidation

The following paragraphs briefly describe a concept which we believe

shou.td be capable of reducing NO x concentration from 10,000 ppm to below

70 ppm, without undue complexity or expense.

The system consists of four stages. In Stage Ia jet type scrubber with

plain H20, part of which may be recirculated, will reduce the initial10,000

ppm NO x concentration approximately 70%. Most of the NO 2 in the NO x mix-

ture will dissolve in the water according to:

3 ,NO2 ÷ H20 _ 2HNO 3 + NO

(ifall the NO 2 takes pare in thisreaction, the 10,000 ppm initialconcentration

wotfldbe reduced to 2500 ppm. _

The gaseous effluentfrom Stage I, assumed to contain 3,000 ppm NO x,

will be conveyed to Stage If, an absorption unit in which 0 3 gas and ozonated

water are recirculated. A chemical oxidation occurs with the insoluble constit-

uent, NO, as Follows:

NO + 03 _ NO 2 + 0 2

This newly formed ,NO2 and the uncaptured NO 2 existing in the feed gas,

being soluble, will dissolve in the scrubbing liquid. As before, i mole of NO

will be formed from 3 moles of NO 2. The presence of 03 in the absorptior,

unit provides highly oxidizing conditions and thereby increases the efficiency

of absorption to about 90,i-.The NO x concentration is thus reduced to 300 ppm

in Stage If.

A choice can be made to either reclrculate the gases in the absorption

unit untilthe NO x concentration is reduced to the desired level, or alternately

to go to a third stage. In Stage Ill,fresh ozonated H20 and 03 are contacted in

an absorption unitwith the gases from Stage If. The NO x concentration is re-

duced to 60 ppm assuming only an ,q0%efficiency.
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Finally, in Stage IV the gaseous effluent is freed of 0 3 residuals by thermal

decomposition in a gas heater and then vented to the atmosphere, with air

dilution as required. The NO x concentration in the exhaust is less than 70 ppm.

The liquid wastes from the three scrubbing stages are combined, neutral-

ized with a suitable alkali to desired pH, and transferred to the waste disposal

pond.

It should be emphasized that this system has otdy been described in a

very preliminary conceptual form. Additional calculations, laboratory scale

experimental work, and prototype development and testingwould be required

before a thorough evaluation of the efficacy of this system could be performed.

Two preliminary tests were performed in the laboratory to provide some

verificationof the concept. The results, shown in Table 3.9.2, were quite

positive.
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TABLE 3.9.2

RESULTS OF NO x SCRUBBING TESTS

System 1
(No Off Gas
Treatment)

System 2

(Ozonation of
Off Gases)

Test 1

PPM NO x in

Gaseou_ Effluent

168"

74

Test 2

PPM NO x in

Gaseous Effluent

PPM NO3/NO 2

In Scrubber Liquor

2,500200*

48 6,250

* Brown fumes visible in gas sampling container.
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3. I0 ADSORPTION OF VAPOR

Molecular sieves can be used to remove a wide variety of contaminants,

including nitrogen dioxide and nitrogen tetroxide vapors, from gaseoL:s effluent

streams. In these systems, the contaminant molecules are adsorbed on the sur-

face of the sieve material, which might be, for example, activated carbon,

activated alumina, or silica gel, with a very high surface area to vohme ratio.

A commerci_1 system that has seen successful application in removing

nltro_en dioxide from the tall gas of nitric acid plants is manufactured by Union

Carbide and uses zeolite as the adsorbent; the adsorbent concentrates the NO 2,

which is then desorbed by heating and scrubbed in a closed loop fashion. This

system is quite expensive, and as far as we know has been applied to large,

continuous contaminant flows; it does not seem to be economically feasible for

smell, intermittent contaminant sources typical of aerospace applications.

An extensive series of tests were performed by us to evaluate the practicality

of using other adsorbeats for removing N204/NO 2 vapors from nitrogen and

helium streams - adsorbents that would be inexpensive enough to allow disposal

of the contaminated adsorbent to a solid land fill, for example. Both laboratory

scale and large scale (up to 9. i SCFM GN 2 and 1.6 liters/mlnute (liquld) N204)

were performed. Adsorbents investigated included charcoal briquets, dry Ice,

aluminum cuttings, alumina, activated carbon, silica gel, and various mL_tures,

both at ambient and elevated temperatures. Detailed results were not available
i

in time for inclusion in this Handbook, but are available as a separate report.

w

I. Sivlk, H. ; Thomas, J. ; Cohenour, B. ; Wiederhold, C. : "rlvper_ollc Pro-
peliants - Liquid and V_por Disposal: Final Report, Phase VI, Task 8, Dry

State Scrubbing Systems for N204 and MMH." Florida Institute of Technoloe;y,
Melbourne, FL 32901, M_Lt'ch1977.
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3.11 CONDENSATION OF VAPOR

3. II. 1 Analysis

The method of analysis presented in Appendix E was applied to the case

of N204/NO2 condensation, as well as to the cases of fuel condensation of

Section 2.13.2. In this case an empirical equation for the vapor pressure of

liquid nitrogen tetroxide in the range 261.90 to 294.9°K was presented by
I

Giauque and Kemp:

lOgl0 p = -1753.000/T
+ 7.00436 - 11.8078 x 10 -4 T

+ 2.0954x 10 -6T 2.

This equation is plotted in Figure 3.11.1. It refers to the equilibrium mixture

of N204 and NO 2 at any value of (p, T).

The latent heat of vaporization, hfg, at 294.25°K was presented by Giauque

and Kemp 2 as 9110 + 9 c-I/mole, based on a series of several experimea_.s.

This value was compared with a theoretical value (based on empirical equations

of _tate and degree of dissociation) of 9223 cal/mole. The value 9110 was used

for this study. In using this value, '_er mole" actually means per 92.016 grams,

as if none of the N204 were dissociated. The value is nevertheless the actual

equilibrium value. It should be noted that the equilibrium at the boiling point is

not altered by the phase change - it is the same in the liquid and the vapor phases.

(_h/_T)sA T was approximated by Cp, as in the hydrazine cases. Fan and

Mason 3 have developed equations for the equilibrium heat capacity of the N204-

NO2-NO-O 2 system, taking account of the equilibrium reaction heat capacity.

Numerical solutionswere also presented; at 300°K, iatm, the result was

c = I,309 calories/gram OK,
P

1. Giauque, W. F., and Kemp, J.D. : '_rhe Entropies of Nitrogen Tetroxlde
and Nitrogen Dioxide. The Heat Capacity from 15°K to the Boiling Point. The
Heat of Vaporization and Vapor Pressure. The Equilibria N204 ffi 2NO2 = 2NO+

0 2. " J. Chem. Phys., Vol. 6, pp. 40-52 (1938). The equation t_.,ed here was
modified to yield p in mm Hg, for consistency with the hydrazine equations. T
is in °K.

2. Op. cit., p. 45.

3. Fan, S.S.T., and Mason, D.M. : "Properties of the System N204 = 2NO 2 =
2NO + 0 2. " Journal of Chemical and Engineex lng Data, Vol. 7, pp. 183-186(1962).
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the value u_ed in this study. (It should be noted that this value is quite dif-

ferent from the frozen equilibrium heat capacity, calculated by Fan and Mason

to be 0.2033 eal/g-°K.) Whether equilibrium or frozen eq_librlum is closer to

reality In our situation is difficult to determine and of course depends on rates,

etc. The equilibrium value was chosen as being the more conservative.

The molecalar weight of the equilibrium mixture is found from the molecular

weights of the two constituents and the degree of dissociation:

M ffi (46.008) + (1-_) (92.016)

where data for a as a function of temperature and pressure were given in Sec-

tion 3.1. For the sake of obtaining an algebraic relationship between ct and T,

we used the equation (see Section 3.1)

was assumed linear over the temperature range of interest, using
the data points at 275°K and 300°K:

F o o-- /_ -HoT = 36.18 + 0.01044 T cal/mole

Thus we have

K=exp ( 0. 01044 T + 36.18 -12" 875 T-1)1.986

where T is in OK. The degree of dissociation, a , at 3.0 atmospheres (44.09

psia) was then calculated, using this value of K, from the equation

ct = 1'K * K (see Section 3.1)

The values thus obtained are plotted in Figure 3.11.2.

The values used for CpN were 6.9S cal/mole-°K for nitrogen and 5.00

cal/mole-°K for helium, as in Section 2.13. The computer code described in

AppendLx E was used, with these values, to investigate cases i_ which saturated

mLxtures of N204/NO 2 vapor in nitrogen or helium, initially at 300°K (80.33°F),

are progressively cooled to the freezing point of the N204/NO2, 262°K (-11.8°F).

The pressure was held constant at 2300 nun Hg (44.47 psia). The slight discrep-

ancy between this value and the pressure used in calculating a was unfortunately
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overlooked at the time this work was performed; the error introduced thereby is

regarded as insignificant.

Figures 3.11.3 through 3.11.7 present the results for the case of a nit,-o-

gen carrier stream. The curves follow the same general format as those in

Section 2.13. The results are even more favorable for N204 than for the hydra-

zine rueIs.

Figure 3.11.3 shows the actual amount of N204/NO 2 condensed, as a func-

tion of temperature. Figure 3.11.4 presents the same information, but in terms

of percentages of the initialmass of oxidizer in the vent stream, rather than

total mixture. Figure 3. ii.5 shows the totalheat removal required to achieve

any given temperature. This information is combined with the resuRs for mass

condensed in Figures 3.11.6 and 3.11.7, which show the heat removal per unit

mass condensed. Figure 3.11.6 is a plot of totalheat removal divided by total

mass condensed at each temperature, while Figure 3. ii.7 is a plotof the incre-

mental heat removal divided by the incremental mass condensed.

Similar results are presented in Figures 3.11.8 through 3.11o 11 for the

case of a he]ium carrier stream. The plot of grams condensed per gram of

initialmixture is omitted, since this result is virtuallythe same as the percent

condensed result when the other constituent is helium.

In our Phase G Final Report, 4 we presented results of a computational ex-

ercise that showed N204/NO 2 vent flow rates of up to 14 grams per second (I.85

pounds per minute) during Space Shuttle loading, for a totaloxidizer discharge

of 60,600 grams (ina helium carrier stream). Itis interesting to use this case

as an example to which to apply our condensation results. Figure 3.11.8 shows

that ifwe were to cool the vent stream to -11.8°F, at which point solid particles

of the oxidizer would Just begin to form, we could liquefy 92_ of the oxidizer, at

a total "cost" of 121 calories (removed) per gram condensed. Hence the highest

oxidizer vapor flow rate would be reduced to about i.1 grams per second (8.9

pounds per hour), the totalmass of oxidizer vented would be reduced to 4850

grams _]0.7 poundst, and the peak heat removal would be about 1600 calories

per second: 22,500 Btu/hr, or about t_votons of refrigeration.

,

4. Report Number ME-76-1, Florida Institute of Technology, Melbourne,
Florida, 32901 (February 197_.
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3• 11.2 E×periments

A 500 ml. r.b. flask containing 50 ml. of N20 4 was connected to the top of

a conventional reflux condenser, as shown in Figure 3.11.12. The condenser

was cooled with water at various temperatures produced in a portable bath and

circulator containing a refrigeration unit and a small water pump. The bottom

of the condenser was equipped with a receiver flask and a side arm which led to

a sparger and which in turn was inserted into a small beaker of water. The sub-

mersible pump used to circulate the cooling water was 1/150 horsepower, and

produced a circulation of 10 liters per hour.

The N20 4 was heated to 35°C and the vapors condensed in the receiver

flask. The cooling water temperatures, the percent of ,'_204recovered and

the time required for recondensation are listedin Table 3• II. I.

TABLE 3.11.1

CONDENSATION OF N204

Cooling Water % Recovery Recondensation

Temperature, °C of N20 4 Time

-2.5 97% i0 minutes

0 88% i0 minutes

,-5 80% 20 minutes

These results, obtained at one atmosphere rather than the higher pressure

assumed in obtaining the analytical results, seemed to provide reasonably good

verificationof the results o£ the preceding section, _nd to reinforce our con-

clusions that condensation can be an effectivemeans of recovering a high per-

centage of N204/NO 2 vapors from vent streams.

Another set of experiments on removal of N204 from a flowing gas mLxture

by condensation, performed by United Aircr_t Research Laboratories, has also

been brought to our attention• Their conclusions were as follows:

"I. A condenser system can be built in which two temperature zones can

be maintained with a single cryogenic.

"2. When the coP.denser system is operated at a total pressure of one

atmosphere and at :L minimum temperature of -68°C with an i_det

6, _ b
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_{f"_ _4-.- Cooling water in

. __,,. Racondensed N204

" _. Sparger

Figure 3.11.12 Experimental apparatus for recondensation of N204.
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gas stream comprising an equimolar mixture of N204 and diluent,

the minimum final concentration of nitrogen tetroxide will be about

750 ppm. Lower concentrations can be achieved by increasing the

initial partial pressure of diluent, decreasing the final tempera-

ture of the condenser, or by air dilution o_ the gas stream emerging

from the conden,er. ,¢5

It is not clear from their description Just how the N20 4 was ultimately

recovered, or indeed whether_the exposure of the N20 4 to these very low tem-

peratures was such as to result in formation of solid particles. The topic of

solidification, as opposed to simple condensation, is treated in the following

section (3.12).

3.11.3 Condensation in Conjunction with Other Methods

Itshould be noted that a single vapor condensation stage co_d serve as

both first stage and regeneration stage for a molecular sieve adsorption system.

The molecular sieve would serve to achieve a low concentration effluent,but

would not have to cope with the large quantities of N204 thatwould be necessary

without the condensation stage. No scrubber/dryer system would be required

during regeneration since the condensation stage would serve the same pur-

pose ifincluded in a regeneration loop. This combination is illustratedsche-

matically in Figure 2.Ii. 13. A scrubber could not be used in a similar fashion

because of the intolerance of the molecular sieve for water.

A condensation stage could also be used upstream of a scrubber, to de-

crea_e the amount of solution required for scrubbing.

i l

4. Communication from David G. HcMahon, Chief, Chemical Sciences,

United Aircra_'tCorporation Research Laboratories, to H.H. Franks, DD-

MDD-41, John F. Kennedy Space Center, dated February 10, 1975.
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3.12 CRYOGENIC TRAPPING OF VAPOR

Cryogenic trapping refers to the use of liquid nitrogen systems in which gase

gaseous effluent streams containing nitrogen dioxide and nitrogen tetroxlde

vapors are cooled to below the triple point of the oxidizer, resulting in accum-

ulation of solid phase contaminant in a cold trap. Th.is collected oxidizer than

then be treated chemically and disposed of.

An intensive e._erimental program was performed by us to evaluate this

means of cleaning _aseous effluents. The concept was not successfully demon-

strated, although further development and testing might well establish the viability

of this concept. Detailed results of our experiment program were not available
1

in time for inclusion in this Handbook, but are available as a separate report.

1. Thomas, John J. : "Disposal of Hypergolic Propellants - Final Report,
Task I, Phase VI." Florida Institute of Technolo_'y, _lelbourne, FL August 1976.
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3.13 UNTREATED DISPOSAL

3.13.1L Simple Dilution with Water

A fairlycommon disposal method for small quantities of N204 consists

of simply dilutingwith water and transferring to the ground ,ora stream. The

addition of water to N204 results in the formation of t2itricacid and nitricoxide:

32N204 + H20 _ 2HNO3 + NO

The State of Florida requires that when dumping an acid intoa stream,

the pH of the stream must not be changed by more than I.0 pH unit. In the case

of nitricacid, dihltionto a normality of i.0 x 10=6 would be necessary to obtain

a pH of 6.0. This dilutionrequires about i.6 x 106 gallons of water per gallon

of N204.

For disposal in significantquantities, attentionwould have to be given to

means of assuring proper dilutionprior to release. For example, a holdiL_g

pond where pH could be monitored prior to release would be acceptable, as would

a steady flow mixing apparatus.

Even with diiution to a safe level in terms of the strength of the acid,

there remains the problem of generating large quantities of NO. Although the

presence of NO is never so obvious as the presence of NO 2, itis itselfa toxic

gas, and eventually reacts with oxygen in the atmosphere to form NO 2.

3.13.2 Atmospheric Discharge

Probably the most common disposal method for N204 , up to the prc,:ent

time, has been direct release to the atmosphere. Vapors are vented to the

atmosphere, usually via tallvent stacks or large air blowers and with some

meteorological precautions {such as wind velocity and direction limitations).

Liquids are allowed to simply evaporate or boil away due to the oxidizer's high

vapor pressure at normal temperatures.

Vent stacks and blowers are both intended to move the toxic vapors away

from the ground surface and to dilute the vapors, either by natural mixing or

forced mixing with air. In the case of vent stacks, certain atmospheric con-

ditions can result in concentrated vapors finding their way back to the surface.

Blowers, Ln _hich the toxic stream is added to a large, high speed air stream,
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are a more positive means of achieving dilution. Both vent stacks and the blower

units used in the Apollo program discharge highly visible, reddish brown plumes,

however.. Visible atmospheric discharges are of ever-increasing concern to the

general public, and probably not without reason in the case of a highly toxic

gas that can react wi_h other trace contaminants in the atmosphere to form

stillmore dangerous substances, including carcinogenic nitrosamines (see

Appendix G).

Since the TLV for NO 2 is 9 milligrams per cubic meter of air, the evap-

oration of one gallon of N204 would require 6.1 x 105 cubic meters (2.2 x 107

cubic feet)of air to reduce the vapor concentration to a uniform level equal to

the TLV throughout the air volume. Actually, of course, the co:_centrationis

never uniform and itis the peaks that we are conce_ne.d with; computational

methods for prodicting peak concentrRtions for various vapor flow rates and

atmospheric conditions :irebriefly discussed inAppendix G.
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4.1 MATERIAL DESCRIPTIO'.I

Inhibited Red Fuming Nitric Acid (IRFNA) (Fuming Nitric Acid Types Ilia

and IIIB)is a highly concentrated nitricacid containing 81.6,_ to 84.$_ nitricacid

(HNO3) by weight, with 13.0% to 15.0% disolved nitrogen dioxide (NO2), i.5,% to

2.5% water, and 0.6,% to 0.8q: hydrogen fluoride inhibitor. Itis a highly corro-

sive oxidizing agent thatwill vigorously attack most metals, and will react v'ith

many organic materials, spontaneously causing fire. Itis hydroscopic, and will

react with sea water, releasing large quantities of toxic oxides of nitrogen. It

is soluble in water in all proportions, with an accompanying evolution of heat and

oxides of nitrogen.

The fumes from LR FNA consist of HNO 3 vapor and NO o, both of which are

highly toxic. The Threshold Limit V:tluesare 2 ppm and 5 ppm tby volume) in air

respectively (5 mg/m 3 and 9 mg/m 3 by mass). NO 2, the monomer of N20 4, was

discussed at greater length in the preceding chapter; see also AppendLx G.

A few of the physical properties of LRFNA are given in Table 4. I.I.
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TABLE 4. I.1

PHYSICAL PROPERTIES OF IRFNA 1

Bubble Point (point at which liquid appears to boil)

at normal atmospheric pressure

Boiling Point of HNO 3

Freezing Point

140°F (60°C_

187°F (86°C)

-61°F (-52°C)

Liquid Density at 77OF (25°C)

Critical Pressure

Critical Temperature

12.9 lb/gal (1.55 g/co)

87.5 atm (1286 psia,

8.87x 106 Pa)

520°F (271°C)

Vapor Pressure:

0°F (-17.8°C)

77°F (25°C)

100°F (37.8°C)

148°F (64.4°C)

0.2 psia(l.38x 103 Pa)

2.7 psia (1.86 x 104 Pa%

5.0 psia (3.45 x 104 Pa%

15.0 psia (1.03 x 105 Pa)

I. "Hazards of Chemical Rockets and Propellants Handbook, Volume Ill:Liq-

uid Propellant Handling, Storage and Transportation." Prepared by the Liquid

Propellant Handling and Storage Committee assisted by the Committee on En-

vironmental Health and Toxicologs', JANNAF Propulsion Committee, Hazards

Working Group. AD$70259, May 1972.
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4.2 RECOMMENDATIONS FROM OTHER SOURCES

The JANNA F Hazards Handbook contains a section on disposal of fuming

nitric acids, which is quoted here in its entirety:

%Vater is the most easily used and the most readily available decontamin-

ating agent. Laboratory and field tests on reactions at 77°F bet_veen fuming

nitric acids and aqueous 5 percent NaOH (caustic soda, sodium hydroxide},

5 percent NaHCO 3 (bicarbonate of soda}, 5 percent Na2CO 3 (sodium carbonate}

and limestone 'ndicate that approximately 50 percent more NO 2 fumes evolve

during the treatment with the foregoing alkaline materials than are given off

during water dilution. Concrete and asphalt contaminated with fuming nitric

acids retain small amounts of acid in surface pores even though flushed ;vith

large quantities of water. the most practical decontamination procedures,

therefore, are as follows..

"a. When furring nitric acid is spilled on concrete or other hard surfaces

having a proper drainage system and neutralizing pit and an adequate supply of

water, complete washh_g down with water is su£ficient. In enclosed areas, flush

with large quantities of water, then spray entire working surface with a 5 per-

cent solution of Na2CO 3 tsodium carbonate}.

'_). For spills on concrete, asphalt or other hard surfaces in the field

where an adequate water supply is not available and where drainage is impos-

sible, it is recommended that the surface be sprayed with a 5 percent solution

of NaHCO 3 (sodium bicarbonate} or Na_CO 3 {sodium carbonate} until bubbling
ceases. "]_

1. '2tazards of Chemical Rockets and Propellants Handbook, Volume III: Liq-
uid Propellant Handling, Storage and Transportation." Prepared by the Liquid
Propellant Handling and Storage Committee assisted by the Committee on En-

vl-,.onmental Health and Toxicology, JANNA F Propulsion Committee, Hazards
V_orking Group_ ADS70259, Ma.v 1972.
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The TRW report 2 covered nitric acid along with a number of other widely

used acids and other inorganic chemicals. The foUowing excerpts from their

"Evaluation of Waste Management Practices" for _hese substances refer to nitric

acids in general, and not speci_icall.v to IRFNA:

"Waste streams containing acids, acidic o._ides, or bases can be treated

by neutralization (lj to form a neutral solution which can then be discharged

safely, or (2j to yield an insoluble precipitate which can be removed by filtration."

"For the acids, acidic oxides and halides, soda ash-slaked lime solution

is most commonly used. In the case of nitric and hydrochloric acids, the

neutral solution of nitrate or chloride of sod.Lure and calcium is formed and can

be discharged after dilution with water."

"Ammonium hydroxide may be neutralized by nitric acid to form a solution

of ammonium nitrate which can be used as fertilizer."

'rNitric acid forms :'. constant-boiling azeotrope with water (68% HNO 3 +

32_ HoO). The normal boiling point of the azeotrope is 120.5°C. Hence,
n

under certain conditions, spent nitz'ic acid can be recovered by steam distil-

lation to yield concentrated acid."

The provisionM limits for nitric acid recommended by the TRW study

were 0.05 mg/m 3 as a contaminant in air and 0.25 mg/I in water and soil.

These "Maximum Exposure Limits" are specifically related to release into

the environment as a result of disposal, as opposed to the TLV's, which are

concerned with worker salety. As a general rule, TRW's recommended pro-

visional limits for atmospheric contamination are two orders of m_nitude

lower than the TLV's. TRW's overall recommendations for disposal of nitric

acid was:

'Soda ash-slaked lime is added to form the neutral solution of nitrate of

sodium and calcium. This solution can he discharged after dilution with water. ,3

'2. Ottinger, R.S. ; Blumenthal, J. L. ; DM Porto, D. F. ; Gruber, G.I. ;
Sant.v, M.J. ; and Shih, C.C. : '_ecommended Methods of Reduction, Neutral-
ization, Recovery or Disposal of Hazardous Waste." Report No. EPA-670/2-

73o053oI (August 1973_. NTIS PB-224 591. Volume XII, pages I06-I03.

3. Ottinger, et. -d., op. tit., Volun_e I, page 173.
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The m.'mu£acturing Chemists' Association recommendation for disposal

of nitri_ acids in general is:

"Dilute and neutr_ize before disposal. Do not flush down drains where

the acid will eventually polute streams, city sewage systems, etc. ,4

Hercules, Inc., a major manufacturer of nitric acids, also recommends
5

neutralization with soda ash or lime.

Allied Chemical Corp., a manufacturer of ItlFNA, provided us with a

recommendation for disposal of this substance in particular:

"Unwanted material may be disposed of by additien to a large volume of

water containing an alkali such as caustic soda or soda ash to neutralize the acid

and cMcituu chloride to precipitate the fluoride. The mixture should be settled

and checked to be sure the pH is 7 or higher before decanting to waste. The

sludge should be taken to a laL_d_ill area for disposal. ''6

4. Chemical Safety Data Sheet SD-5 _Revised 1961_. page 15. Manufacturing
Chemists t Association, 1825 Connecticut Avenue, N.W., Washington, D.C.
20009.

5. Material Safety Data Sheet SOS-4, May 23, 1972. Synthetics Department,
Hercules Incorporated, Wilmington, Delaware 19_99.

6. Communication dated October 9, 1973, from W.H. Weed, Supervisor,
Chemicals Technical Service, Industrial Chemicals Division, Allied Chemical
Corporation, P.O. Box 6, Solvay, New York 13209.
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4.,3 SIMILARITIES BETWEEN iRFNA AND NITROGEN TETROXIDE
D IS POSA L

In most respects, IRFNA pre._entsthe same disposal problems as nitro-

gen tetroxide, and the various disposal methods are the same as those discussed

in the preceding chapter. The vapors given off by IR FNA at low temperatures

are primarily NO 2, and hence essenti_,llythe same as N204/NO 2 vapor. The

addition of water to N204 results in the production of nitricacid, and hence

aqueous mixtures containing N204 or IRFNA are virtuallythe same. The ad-

ditionof water to either N204 or IRFNA results in the evolution of oxides of

nitrogen in significantquantities, as well as increased temperature.

For these reasons, thischapter will concentrate on areas where there is

some difference between the two oxidizers, and will not attempt to be a compre-

hensive discussion of disposal methods for IRFNA. .Methods not discussed here,

such as condensation, catalyticdecomposition, plasma arc decomposition, etc,,

should allbe appropriate for IRFNA as well as for N204/NO 2, and the discus-

sions of Chapter 3 should in general apply. The chief exceptions will be in those

cases where HF, present in small amounts in IRFNA, causes problems.
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4.-I CHEMICAL NEUTRALIZATION

Water dilution followed by ,mutralization has in the past been the most

common means of disposing of IRFNA; at the present time, the usa4_e of

IRFNA is practically nonexistent in this country. The waste IRFNA is typically

diluted with water in the proportion 100:I or so in a suitable tank or pond.

The solution is then treated with one of a number of reagents, such as those

in Table 4.4.1. The reagents are added slowly to aUow heat dissipation, and

in slight excess. A soluble calcium salt may be used with m_y of them, if

desired, to precipitate the fluoride used a_ inhibitor. If fluoride remov'al is

desired a filtration or settling step is required. The pertinent equations are:

1. 2HNO 3 + Na2CO 3 _ 2Na.NO 3 + CO 2 _ _-H20

2. HNO 3 _- NaOH _ NaNO 3 + H20

3. HNO 3 _- NH4OH _ NH4NO 3 + H20

4. 2HF +Ca(OH) 2 _ CaF 2 _ + 2H20

Filter, to Solid

Waste Disposal

There are only minor differences in the three methods shown _n Table

4.4.1 for performing the chemical treatments. For example:

I. The care required in mLxing and handling the strongly caustic

NaOH solution is a slightdisadvantage for method (2_.

2. The odor of NH 3 may be objectional for method (3_.

3. The Na._CO 3 method has an advant.'tgewith respect to ease in hand-

ling.

Use of other neutralizing agents than those shown in Table 4.4. I is also pos-

sible. In particular, calcium carbonate dlmestonet would have the advantage

of accomplishing both the neutralization and the precipitation of CaF,_ with-

out need for a second reagent. This insoluble compound could be used in a

packed bed, either in the pond itself(see Sectio.n_3.3_or in a separate treat-

ment loop.

The effectiveness of the neutralizationdisposal methc4 for IRFNA has

been amply demonstrated veer the years. The major disadvantages are the

high chemical :rodequipment cost incurred in disposing of the waste IRFNA,
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TABLE 4.4.1

NE UTR A LIZ ATION RE AG ENTS FO R IRFNA

]

Method

o

e

Neutr aliz ing
Reagent

.ll

Na2CO 3

NaOH

NH4OH

Ca(OH),) (in
additioff to

any of the 3
reagents
abo w.

_ _ i i

Products Formed

Solution of NaNO ,

Ca(NO_)2 , CO2, 3

trace o_ HF
i

Solution of NaNO 3,
trace of HF

Solution of NH4NO 3,
trace of HF

CaF 2 precipi.tate

Chemical cost

per Ib I_RFNA*

$. 055

S. 185

H
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and the NO x evolus.ton that may occur during [ilution. Means of precluding

this NO x evolution should receive further study.

Further dilution with water is necessary before the solution can be

pumped to a _tream or other body of water because of the nitrates (NO 3)

£ormed. To dilute to the provision_ limit ._f 45 mg/l (as NO 3) recommended

by the TRW report 1 for ammonitun nitrate and sodium nitrate requires ap-

proximately 1.7 x 105 liters (28,000 gallons) of water per gallon of IRFNA.

This amount of water would reduce the H F concentration to about 0.4 mg/l

which is somewhat hi_her than the 0.1 mg/[ provisional Limit recommended

in the TRW report," tb.us indicating the need to precipitate the fluoride.

lo

mQ

Ottinger, et al, op. tit., Vol XII, p. 7_

Ibid., p:_ge 105.
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4.5 INCINERATION

Insofar as we have been able to ascertain, incineration has never actually

been used as a means of disposal for IRFNA. There seems to be no reason

why itcould not be used, however, with results quite comparable to nitrogen

tetroxide (see Section 3.6. ) In the case of the Thermal Re._ _rch incinerator

used zt Cape Canaveral Air Force Station..IRFNA is included in Pan Amer=

ican's "Standard Practice Instruction No. 41-26-013", dated April 2t_,1971,

and hence could be incinerated as a routine matter; to our knowledge, none h._s

actually been disp,Jsed of in this manner.

The presence of HF in IRFNA presents an added difficultyrelative to

N204. A scrubber on the ey_hauststack of the incinerator will probably be

necessary to remove the HF and any fluorine compounds formed during the

combustion process.

The higher boiling point of LRFNA, relative to N204, might require soma

modification of the injectionsystem used _.oatomize or vaporize the waste ox-

idizer as itenters the combustion chamber,
i
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The scrubbing technique with plain water, solvent or dissolved reagent

has been used successfully for years by industry as a disposal method for many

gasest mists and particulates, including nitric acid vapors and oxides of nitro-

gen associated _vith the production and use of nitric acid (Section 3.9). For

small installations, either plain water or alkaline solution scrubbing may be

used to reduce NO 2 and HNO 3 emissions. The usual problem exists (see Chap-

ter 3) of formation of insoluble NO when NO 2 and water combine, and hence con-

siderable NO emission is to be e.,cpected using th_.s method. It is likely that

this problem can be eliminated by proper use of a NaOH scrubbing solution, in

view of the results we obtained in the case of nitrogen tetroxide, as reported in

Section 3.9. No tests of this method using IRFNA have been performed, how-

ever.

Regardless of the method used, water alone or alkaline solution, the

amount of nitrate released wLll be the same, but the pH of the effluent solution

is controlled in the case of alkali addition.

• _ 1_.] ....... . ............
....... • . ....... , , = " " .:_-'_" ..... ,.... I I.... "_-I _ " I [
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4.7 REMOVAL OF FLUORIDES FROM EFFLUENT STREAMS

I[{FNA contains approx/mately 0.7_ HF _on a mass basis} as a decom-

position inhibitor. HF and the fluorides that will be formed as products

of reaction of HF with neutralizing reagents are toxic substances whose re-

lease into the atmosphere or water streams must be controlled to low limits.

One method for removing fluorides from waste liquid effluents is ad-

dition of .l soluble calcium salt under controlled pH. Insoluble CaF 2 will pre-

cipitate out. This precipitate may be separated by filtration, settling or other

suitable unit operation. A residual amount of CaF 2 will remain in solutlan due

to its slight solubility in water. It is only by further dilt, tion with HoO that the
w

residual CaF o may be reduced to an acceptable level.

To evaluate the effectiveness of this method, a series of experiments was

performed. The solubility of CaF 2 in pure water is 17 ppm; our objective was

to determine whether the solubility in a solution of treated IRFNA would be suf-

ficiently close to this figure to give reasonable levels of fluoride precipitation.

Samples of IRFNA were diluted with water and neutralized using sodium

carbonate, Na2CO 3. The dilution yielded a working solution with nitrate con-

centrations be_veen 2.2 and '2.6_, and fluoride concentrations of approximately

200 ppm. The sodium carbonate was added to yield a pH bet_veen 9.5 and 9.8

except for one run, where only enough was added to reach approximate neu-

trally,.

Solutions of soluble calcium salt, CaC12 or Ca(OH) 2, were added in ex-
.&

cess to provide the Ca _" ion in at least 2 to 5 times the stoichiometric quanti .ty

required for precipitating the contained fluoride ion. After standing from 1 to

24 hours to allow reaction or crystallization of CaF o, the treated solution was

filtered through a millipore apparatus using, a 0.45 micron pore size filter.

Analyses were performed on original and filtered solutions for NO 3 a',d F-'.

The results of the five tests are presented in Table 4.7.1.

These results were quite disappointing in terms of the effecti_,eness of

this method for removal of fluorides from treated IRFNA effluent streams. The

solubility of CaF,, in these stream_; is just too high - on the order of 100 ppm
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or higher, as opposed to the 17 ppm obtained in pure water - to allow good

yields of the solid precipitate.

In _m attempt to achieve better results, a number of other experiments

were performed in which the pit was adjusted at levels all the way from 1.'2

to 12.5, and oth_r calcium _alts - C'I3(PO4) 2 and Ca(tt4PO4) 2 - were used.

The results were not substantially different from those presented in Table

4.7. I. Our conclusion at this time is that the problem lies with the nitrate

concentration - that the only way to decrease the solubility of CaF¢_ is to de-

erc'.tse the concentration of NO 3 ions in the tre:lted solution. Since the nitrate

concentration i_ not :_fected by neutralization or oth,r chemical treatments,

tim only means of achieving a lower concentration of nitrates is by dilution.

This dilution would probably result in lower fluoride concentrations - final

a_ well as izzitial - but it is not -it all certain that the absolute quantities of

fluoride in the final solution would be reduced.

TABLE 1.7.1

DATA ON REMOVAL OF FLOUIilDE FIiOM DILUTED IRFNA

Run initial Final c;

,_ Concentration Fluoride Fluoride pH
Nitrate Fluoride Concentration Removed

1)Pro ppm

1 205 150 27 9,

2 '26, I00 195 115 40 9.7

3 26, |00 150 80 46 9.7

4 .,o 000 170 105 38 9.5

5 26, .t00 2{)5 125 ;]9 7. '2

Average -- 38":, fl_ oride removed. _

,\t this time, then, we know of no really effecti,'e me:ms of removing

fluorides from treated _or diluted} IR FNA liquid effh ent streams. Dilution

is the only means of achieving the "Provisional Lin it", 0._ to 1.7 ppm in

water, recommended in the TRW report l for dispos'fi of fluoride-cent.tining

effluent s.

t... Ottinger, R.S._,_,t al, op. eit., \'ol XII, pages 12, 196.



In cases where someof the fluoride is precipitated as CaF._, disposal

of the precipitate should follow the guidelines established in the TRW report

in ¢ommction with fornmti_,n of the same waste product during treatment of

plating, wash and tin recovery wastes from halogen tin lines used in tin

plating:

"To allow economic recovery, the discharged, allmline CaF 2 slurry

should be lagooned... The separated CaF., should then be dried, and re-

used as-metallurgical grade CaF o in steel mill operations. V,qaere economic

_.'ecovery is not feasible, the sludge should be added to a landfill. ""

It should be mentioned that calcium compounds, such as calcium carbon=

ate tlimestone_, could probably he used economically for the initial neutral-

ization step itself. The precipitation of a portion of _he CaF,_ formed would

then be an added benefit albeit a minor one associated with this_e_hnir_ of

alkaline mate rial.

The presence of H F in gaseous effluent streams also presents a problem.

The Threshold Limit Value is 3 ppm bv volume in air t2 ,, 3. rag, m _, '_ndthe

Maximum Exposure Limit for atmospheric disposal recommended in the TRW

report is two orders of magnitude smaller. 3

Removal from the waste stream can be readily accomplished b.v means

of either absorption _scr',tbbing) or adsorptio,a. One operational scrubbing

system was described for us by Dr. Otttnger:

'_fhe IIF laser system exhausts its gases through a steam ejector system

which acts very similar to a venturi 8crubber, The water ejected in the latter

stages of the ejector is alkaline, forming soluble salts with the absorbed H F.

The liquid effluent from the ejector is passed through a limestone packed bed

which fixes the fluoride ion as highly insoluble..calcium fluoride. The water

from the process, which is virtually free of fluoride ion, is put into a holding
,fl

pond mad used as process water.

2. Ottinger, R.S., etal, op. tit., Vol XII, page 13.

;_. Ottinger, R.S., et al, op. tit., Vol XIII, page 104.

4. Ottinger, R.S., TRW Systems Group, One Space l_ark, Redondo Beach,
California 90276. Written communication dated 25 October 1974.



w

2-t7

In our applications, the problem of CaF,) solubility would arise in eases
w

where the scrubber effluent contained significant nitrate concentrations.

Adsorbents mentioned in the TRW report as potential ineans of recovery

of HF from gaseous effluent stre-tms are "activated carbon, alumizm,, silica

gel, and various molecular sieves..5 Our w, rk using these adsorbents for

hydrazine and nitrogen tetroxide vapors was described in Sections 2.15 and 3.1C.

5. Ottinger, R.S., et al. op. cit., p:lge 109.



248

4.S UNTREATED DISPOSAL

Far more water would be required to dilute untreated IRFNA to a

normality of 1.0 x 10 "6, as required to a,:hieve an effluent with a pH o[ 6

(see Section 3.13.1), than the 28.000 gallons H,,O per gallon IRFNA needed

to reduce the nitrate concentration im a chemic'aLly treated solution to the 45

mg/l provisional limit (Section 4.4). hi eases where it iS feasible to use

such large quantities of water, there is probably some advantage to the fact

tbat additional ionic species - sodimn, anmmnium, calcium, etc. -are rmt

introduced into the effluent. The problem of evolation of oxides of nitrogen

duritg dilution is a problem, as always.

Untreated atmospheric disch-trges present the same problems as those

discussed in Section 3.13.2 with regard _o N204/NO 2, with the added problems

of HNO 3 atxd HF v'tpors, both of which have much lower TLV's than nitrogen

dioxide (3 ppm for HF and 2 ppm for HNO3, versus 5 ppm for NO2). In view

of the ease of scrubbing the HNO 3 and I1 F, and at least the major part of the

NO x, from these gaseous streams, there would seem to be no justification for

ever discharging LR FNA vapors directly to the atmosphere.
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5.1 MATERIAL DESCRIPTION

Propellant gr.'_ie hydrogen peroxide is a cle:tr, colorless liquid, slightly

more viscous than water, containing from 90c_, to 98"i, HoO o, the remainder be-
w

ing water. It is an active oxidizing agent, and can initiate the combustion of

m,_re organic materials. It also decomposes rapidly on contact with many in-

organic compounds, yielding water, ox.vgen and heat. The amount of heat re-

leased is normn,lly such that all of the water formed will be superheated steam.

Hydrogen peroxide is miscible with water, ,'flcohols, glycols, aeetates,

acids, and ketones. It is ne,'u'ly insoluble in petroleum ether, toluene, styrene,

carbon tetrachloride, chloroform, kerosene, fuel oil, and gasoline. Its reac-

tivity can be quickly reduced by" dilution with water. On the other hand, it can

form explosive mLxtures with many organic liquids, both soluble and insoluble.

A,_ long as contamination is avoided and containers m'e passivated, hydro-

gen peroxide is relatively stable, decomposing _ a rate of l'_,• per ye,,u', or less,

-_t 70°F. The decomposition rate approximately doubles for each 15°F increase

in temperature. Sm:tll quantities of contmnination-especially alkaline materi,"d

or hea_, mehtls- c,'m cause runawqy decomposition. The tendency toward rapid

decomposition in the presence of contaminants can be counteracted to some ex-

tent by certain organic and inorganic stabilizers. Once underway, accelerating

decomposition can be brought under control by the addition of phosphoric acid.

Vapor concentrations of hydrogen peroxide ,'_bo_ 26":- by volume (40_, by

weight) in air become explosive at atmospheric pressure in a temperature range

below the boiling point, "rod ean be ignited by a sp,,u,k.

Health hazards assoeiated with concentrated hydrogen peroxide result from

its strong oxidizing properties. Irritation of the eyes and respiratory tract, burns,

and delayed but severe eye damage can oeeur. The TLV is 1 ppm by volume in

air _1.5 mg/m3_.

Some of the physie:d prolk_rties of hydrogen peroxide are given in Table

5.1.1.

1. The material in this section is based on Chapter 13 of "H,'tza_'ds of Chemical

Rockets ,'rod l_opellant_ llandbook, Volume IH: Liquid th'opellant ltandling,
Stor,_e and Tr;msportation", prepared by the Liquid Propellant Handling and
Stor:_e Committee assisted by the Committee on Environ,n, ent al Health and Toxi-

colo_', .TANNAF Propulsion Committee, HazmrdsWorkingGroup. AD 870259,
May, 1972.
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TABLE ;3.1.1

,}

PHYSICAL PROPERTIES OF HYDROGEN PEROXIDE"

Property 90_ • Concentration

(by Wt. )

98"_, Concentration

(by Wt.

Boiling Point at
One atmosphere 286 ° F t 141 ° C_

Freezing Point ' 12°F (-II°C)

Liquid Density at
_8°I. • (20o(_") I i.t;Iblgal

I.3S7 g/ec)

'2,)9.5°F (148.6°C)

27.5°F (-2.5°C)

1I.95 Ib/,_ml
1. 436 ,, ,' •_. re)

2. "ChemicM S:U'etyData Sheet SD-53." M,'mufacturing Chemists Association,
1825 Connecticut Avenue, N.W., Washington, D. C. 20009. Re_'ist_t 1969. There
seems to be considerable disagreement over the exact properties of hydrogen

peroxide, which arc strongly dependent on the water content, :rod :u'e :tll approx-
imately line:u" at H20 2 concentrations _ove 90":. The data quoted here m'e in
close ,_reement with those given by one m:mufaeturer, FMC Chemicals, In-

ot'g:ufic Chemic:tls Division, 633 Third A_vnue, New York, N. Y, 100 17 _Bul-
letin No 4t;_. there is somewhat more discrepancy relative to the data in the
,IAN.'NAF llaz:u'ds H:mdbook (see footnote 1_.

............ ,=-.._ ._ __ - .- _.i..__=.._;.---_ ..... r_._a ......... "-I'- ...... r'(7_"( "_ " ............ i "1
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5.2 RECOMMENDATIONS FROM OTHER SOURCES

The JANNAF Hazards Handbook I recommends that "Containers of pro-

pellant grade hydrogen peroxide should be taken to an isolated place, uncapped,

tipped over, and emptied, washing the peroxide away with large quantities of

water. "

The MCA states that '_ydrogen peroxide is an exceptionally pure pro-

duct and contains no contaminants that would cause surface water pollution,

or interference with sewage. Its decomposition products are pure water and

oxygen. However, strong hydrogen peroxide should be dilated with copious

quantities of water before disposal to prevent stron_ reaction with organic

materials and to prevent injury to fish life since there is some evidence that
O

high concentrations of hydrogen peroxide are harmful to certain fish. "

The TWW I_eport 3 recommends that '"_Vasted concentrated hydrogen per-

oxide can be disposed of by dilution with water to release the oxygen. Agi-

tation would _tccelerate the decomposition. After decompositicn, the waste

stream may be dtscharged safely."

1. "Hazards of Chemical Rockets and Propellants Handbook, Volume III:

Liquid Propellant Handling, Stor_'tge and Transportation." Prepared by the
Liquid Propellant Handling and Storage Committee assisted by the Committee
on En_iroRrr.,ent:tl Health and Toxicology, JANNAF Propulsion Committee,

tiazards Working Group. AD $70259, May 1972. P:iges i3-14.

'2. "Chemical Safety Data Sheet 5D-53. " .Manufacturing Chemists Assoc-

iation, 1S25 Connecticut Avenue, N.W., Washington, D.C. 20009. Revised
1969. P_'tge 30.

3. Ottinger, et al, op. cit., Volume XII, pages 107-108.
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5.3 DISCUSSION AND CONCLUSIONS

The choice for disposal of liquidhydrogen peroxide is basically one of

whether to decompose the material before adding itto a water stream or

large body of water, or not. In either case, dilutionwith water to safer

concentrations is a necessa_' first step; a ratio of five parts water to one

part HoOo is probably more than adequate in most cases, in cases where
m

harm to fish lifeis of concern, either dilutionwith copious quantities of

water or prior decomposition will be necessary.

The table below shows adiabatic decomposition temperature _-mdactive

o_,gen content as a function of H20,_mconcentration, as a guide is dilution.

Concentration

Adktbatic Decomposition

Temperature

Active Oxygen Content

30q 50% oq, 90q

°C !00 '233 740
OF 212 451 1364

(Wt c_) 14.1 23.5 32.9 42.3

Decompo_iik, iLof the hydrogen peroxide pric, r to disposal may be hastened

by use of a catalyst; platinmn :rod silver screens have been used for this pur-

pose. W.R. Grace :rod Co. of B:fltimore, Ma.ryland, recommended the use of

their Grade 908 m,-ugI:mese cat,'flyst when we contacted them. .Many other ma-

terials could :flso be used. Alternatively, ,%lkaline material such a_ sodium

hydroxide fNaOH_ c:m be added. One organization that we contacted dilutes the

H.,O., to be_veen 25 :rod 40 weight percent ar:d then adds NaOH to a concentration

between 0.5 :rod 1.0 weight percent. .At 100°C decomposition is 95"[, com_lete

iz_ one hour.

.Addition of alkaline mateci:fl has the disadvantage that ,any material that

could be added is going to be more harn_ful to the environment, in the long run.

than the hydrogen peroxide itself. Although the small quantities involved may

render :my :msociated problems insigr_ific-',nt, it still seems a shame to con-

taminate a material that is non-toxic :rod an excellent oxygen source just for

the s,%keof disl_sal.
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If the H202 is diluted with water containing quantities of organic mate-

_'ial, the organic material will likely serve as a catalyst and also be oxidized

by the. oxygen produced during dissociation, forming CO 2 and N20. In thl_

case, the water will be returned to the environment in ._ more pure eonditLon

than its "natural" state.

The use of 1-1202as a source of supplemental oxygen has been success-

fullydemonstrated by DuPont for several prevalent problems in both indus-

trialand municipal waste treatment systems. 1 Special emphasis has been

placed on its use as a substitute source of oxygen that can be intimately mLxed

with the water and organisms, without requiring elaborate equipment.

In general, itwould seem _hat the best disposal method for H202 is

dilutionfollowed by direct addition to a stream or other body of water where

its high active oxygen content will be beneficial in increasing the dissolved

oxygen (D.O. ) content of the water, convertin¢,organic material to CO 2 and

H20 _.ndkillinganaerobic bacteria, which are a major source of infectious

disease.

Exceptions to this rule would occur in cases where harm to aquatic

lifemight be a significantproblem, or where chemical contaminants in the

water might be expected to react with the H202 to form undesirable products.

In these cases, decomposition of thv I:1202prior to discharge would be in-

dicated. This decomposition can be hastened by addition of appropriate cata-

lysts - preferably catalysts that will not themselves enter the solution in any

significantquantities. Itis possible in many cases that naturally occurring

organic'materials willdo _ adequate job of catalyzing the decomposition of

the H202 .

Disposal of the H,)Oo in an existing sewage treatment plant is an alter-

native that is well worth investigation,as the two disposal operations would be

mutually beneficial - ifthe H202 were added to untreated sewage as itenters

the plant, itsdecomposition would be hastened and the oxygen released could

immediately be put to good use in reducing the load of organic material enter-

ing the plant.

I. Haskins, James W., Jr. : "I_O o Looks good for Sewage Treatment".

Innovation, Fall 1973, pages 6-9 (E?.I.'DuPont de Nemours and Company,
Inc., Wilmington, Delaware 19898).
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These methods might be inadequate in the case of contaminated H202 that

has been stabilized with H3PO 4 (phosphoric acid). Decomposition would leave

phosphate residues requiring additional treatment before disposal Into bodies

of water. This would depend, of course, on the tot_d cnntent of phosphates in

the dilute solution.

Pouring undiluted H._Oo on the ground would seem to us to be a poten-
m m

tially hazardous practice that should at least be limited to barren, sandy areas

and followed with copious quamities of water. Disposal into stre,'uns or bodies

of water is to be pre;erred wherever this option is available.

Atmospheric discharge of tL, O,, vapors, which :u'e non--toxic, would not

seem to be harmful environmentally. There is, however, a serious safety con-

sideration in the vicinity of the point of discharge, and attention is called to the

TLV of 1 ppm in air - a value lower than that for nitric oxide, for example, a

toxic gas that does cause atmospheric pollution when present in sufficient

quantity.

A very rough approximation to the ttoO o vapor concentration over a quiet

pond containing H,,O o, as a function of ttoO o concentration in the point, may be

made by assuming that the HoO,_ follows Raoult's law even at very low concen-

trations:

.: {'.)

Ptt20 2 PH202 XH202

O

where PH202 is the partial vap_r pressure of H,,O._.. in solution, PH,,_O,__. is the

vapor pressure of pure H._O,, at the same temperature, andXH,_O,_ is the mole

fraction of H,_O,_ in solution. For the mole fraction (volume fraction) of H2Q 2

vapor in air to be 1 ppm, the pm'tial pressure of the vapor is 10-6 times atmos-

pheric pressure, or 760 x 10 -6 mm Itg. Taking the vapor presstu-e of pure

H_O., at 30°C (87°F_ to be 2.8 mm Hg (Chemic,'tl Safety Dora Sheet SD-53) gives

•_H,,O,, -- 760 x 10-t_/2. S = '2.71 x 10 -4 The mass fr-wtion of the HoO o is re-

lated to the mole fraction according to

MH,_O. XH,_O,_

mfH202 = MtI,_O, _ XH,_O,_ .- "MH,_O (l'NI-IoO,_

__ _ _ ........... - - ." " A'--;" ' " , ". '_'i _" ' -:_ ....... _'"T ........................
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where M is the molecular weight. With _iH202 = 34, MH20 = lS, we have

17XH202

mfH202 =
$ XH202 _- 9

Sabstituting X = 2.71 x 10 -4 gives mf --"5.13 x 10 -4 , or 0.0513% by mass (513

mg per liter}. This result is probably conservative since it assumes liquid-gas

equilibrium ( a still day } and a rather high pond temperature. It is very approx-

imate, since it assumes a Raoult's law relationship in the absence of data on

Henry's law constants for HoO o solutions in water.
m m
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A. I CONS'FRt'CTION t)I: I)I,_i't)SAI, PONI),";

If holding ponds or la_oons are to be u.ce,t for gathorit_.¢,, ,liluting, neu-

tralizing, reacting, or otherwi._e proees-.:ing waste hypcrgolic faels, several

pr,_blema an, i choices re_arding the construction of tile ponds present them-

selves. Choice of materials and the basic structure will be addressed in a

general way here.

The comhined factors of a high water table and the drainage adv:mtage

,,f placing the hohting pond water levt, l below grotuat level combine to limit the

depth of "1holding t)olld it_ lll;lnV gt.l'e,'ls, l_:ll'ring extren_e nle.'lSUl'eS. A concrete

!×rod or t:mk which is to be ,_eea_i,,nall.v emptied cannot be considered to be

st:_ble it" it extends in ,lcpth into the water table and is not ballasted - it is

suhject to floating up when empty. It is possible, dependi_,_ upon tile eiremn-

st:races :!1 sl_.,cific loe:ltions, that it wouhl be more economical to build hoht-

ing p,m,ls above the ]oc:fl surroundings.

Construction possibilities include reinforced concrete, reirfforced

concrete with sealing comlxmnds, reinforced concrete with sealing interla_'ers,

and simple exc:lv:,ltion with a synthetic liner.

A simple excavation without :! liner is unsuitable due to its pcrnw:tbility,

:rod a lined excavation might be unsuitable in some :l})plic:ltions due to its

delic:lcv 1,2. I,e;d_:tge of fuel solutions from a col_.erete l;Olltt c'ln rt, sult fronl

seepage through tileintent:t1or und:m_aged concrete itself,and leakage through

any splits,,rcracks which dexvlop in the pond. The construction of a sh:filow

holding pond that will retain its structural integ-ritv and not split or crack is

_echnologic:flly routine if somewhat expensive. Considor;ltion needs to he gixvn

'o the sul_-soil in the region ,ff the pond. A found:ilion or pond-bed might have

Io be built, depending on the r,,sults of :i sub-soil study. The design and in-

st:fll:ttion of tht, rt, infort'elllt2lli steel is of vit:fl illltR_rt:lnet, to tht_, structural

integrity of the hohlitl_ I,_nd. I.'ree.,e-thaw c_'ch:s, in are:is where they ocetll',

should, ohviouslv be taken into account hv the designer. With prolx, r

1. Ew:}hl° G.W.: '.'Stretching the I.ifesp:m of Synthetic I'ond-l.inings".
I),,_, pp. _;7-70.I,'ht,nlic;ll El_itlool'itl_, I_Ctol_et" l, _'"

'2. Iqttn_:lr, ,1., :trtd lc,tlicl.:l, I. A. : "So'tceling :md Inst:dlin_ Synthetic

I'on, l-l,iniu,...s, " Chemic:fl l.:,:gineering, l,'ebru:wv ,'_, iq7:l, Pt'- 67-70°
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engineering design and construction, hohiing ponds can Ix, constructed which

will remain integ'ral so that seepage through structural cracks in the pond wall

ne¢_t not be considered.

M:my factors of m-lterials, design, workmanship, and installation affe.et

the permeability of integral concrete. Properly designed and constructed, 'm

unlined and non-waterproofed concrete holding pond will be essentially water-

tight for our purposes. Qu-mtitative data are given by sever-tl sources. Jobn-
3

son states (pp. 7-8_: "Uneracked cement paste without continuous capillary

pores has a coefficient of permeability of about 1 x I0 -12 era/see, :rod so is

lest. permeable than most rocks. Due to fissures in the paste and cracks at

the paste - aggregate boundaries the perme-lbility of concrete is from 500

to 1000 times as gre-_t, but even this is low enough for structttvl concrete to

be considered for most practic._l purposes to be completely imperme-lble, or

'waterproof'. "

Assuming a permeabilils" of 10 .9 cm/sec, and a pond _0 feet long by i0

feet wide by 4 feet deep (2_.4 m x 12.2 m x 1.22 m) yie'lds a total seepage of "1

about I/3 liter _i. _ cups_ per day - an ,m_ount considered to be insignificant in

:llmost all c:lscs.

The attainment of a low permeability is dependent Ul_n the choice of

the concrete mLx, the amount of water used in the mix, the density of the con-

crete as laid, and tl_e curing of the concrete. The interplay of these variables
4

is dcscril_ed, in part, by Moore :tnd ,Moore:

'_It is not difficult to secure watertight concr.ete with l_)rtland cement

without the use of special materials, if attention is l):liti to the control of the

factors which influence watertightness.

"The ,_ame factors which influence streng,'th and other properties ,_f

eencrete also gre:_.tly affect watertightness. In order to produce watertight

coaerete it is essential that sound aggregates of low porosit:,' Ix, incorporated

in :In il_.llx'rviotls cement-water paste. To secure ;In iml_,rvious paste a

relatively h,w w:lter-eement ratio must t,e used.:lzxt the con,'rete nlqst he

3. ,loi_nson, R.P.: gtructu,-:_! C_ncrete. Mc_;r:lw-!iill, l.ondot,, 1:)67.

1. .Xh×_re. tl. I:., and .Moore, M.B. : "I'cxtl_ook of _he Materials _f
Engineering, "_th Edition. .McGraw-llill, New York,, !q:',;_.
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sufficiently cured, since watertightness of the paste is g'reatly influenced by

the extent to which the chemical reactions have progressed before it is subject

to water pressure and this in turn is controlled by the kind and duration of

the curing.

"The diagrams show in :x striking manner how g'reatly the leakage at a

given age is reduced by a reduction in the water-cement ratio. They also show

that for a given water ratio the leakage rapidly decreases with duration of moist

curing until it finally ceases entirely. These results emphasize how important

it is, if watertightness is desired, to extend the c, ring period until the internal

structure of the p.tste is built up to the point where it is impervious to water.

120,) i
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"In addition to the factors just discussed it is also essential that plastic,

workable mixes be used so that they may be easily placed without segregation

and al:'o that the concrete be thoroughly mixed. Where l)ossiblc, placing shouhi

he ct,ntinuous :rod care taken to avoid undue accumulation of x_ater on the sur-

faces of the layers. It is essential that cracking ,ff the concrete due to settle-

men', or to shrinkage in settling and to tcmt_.,r:tture changes, he :tvoided in



2G]

in watertight construction. Consequently, reinforcing steel and expan._ion

joints must generally be provided to aid in preventing the formation or ex-

tension of cracks. Vv'here settlement or contraction cracks are likely to

occur, the use of a flexible membrane ... may be necessar3.'."

It is concluded that, given proper care in design and installation, a rein-

forced concrete holding pond is quite adequate to the needs. A concrete surface

can be designed to accept the loads of moderate sized materials handling equip-

meat if necessary, and can be designed to neither crack and leak, nor to seep,

dangero|.m amounts of hypergolic fuel or oxidizer selution.

It may be deemed either expedient or necessary to completely seal a

holding pond for any of sever-ll reasons - to protect the environment from trace

amounts of contaminant, or to protect the concrete itself from the holding pond

contents. Means-of varying cost, reliability, and suitability-exist for the

accomplishment of any or all of these goals, including coating an inside or out-

side surface with a crust concrete, with tar or bitumen, or with a polymer

lining applied in sheets or sprayed or brushed on the finished survace. Poly-

mers ir use include PVC, bakelite, vinyls, poiyethelene, Oppanol, silicones,

and natural and synthetic rubbe;'s. Synthetic polymeric additives may also be

added directly to the mortar. Means also include membrane seals of polymers,

sheet plastics o:" tar between concrete layers, requiring particularly careful

structural design to avoid sheer stresses or large stress gradients across the

membrane. While it is expected that these sealing techniques will prove to be

unneeded, it is well to know that they are available. The concrete itself may

prove to be chemically vulnerable and neL_l protection. Concrete, for example,

i._ known to he sensitive to sulfate salts. The foregoing rex'iew of techniques

for protection and waterproofing of concrete is based largely on Biczok's

encyclopedic text 5 on the technology ;rod protection of concrete.

5. Bie.,ok, Irate: Concrete Corrosion- Concrete Protection. Akademiai

Kiado tllungarian Ac:ldemv of _ciences|, Budal_:.st, 1964.

............:_:,_ •.............. :-,'. ,, "*| _.......... - r......... i"_" " ; ............. III I I ......... _I
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FURTHER NOTES ON DISPO_ L PONDS

Allowance for rainstorm: it is necessary, with holding ponds: to allow

sufficient dry volume above the holdings for the pond to accept a historic

rainf').ll without overflow. The only alternative is to cover or partially

cover the pond.

Animal and bird exclusion: it is desirable, and possibly environmentally

necessary, to exclude animals from holding ponds. Those that walk and

crawl can be excluded by use of )_.ripheral fencing. Those that fly can

be excluded by use of pond-top screening or netting. It should be noted

that animals have senses, often keener in particular ways than man's,

and these may be sufficient for exclusion. For example, the use of

bright color dyes in the pond water may be sufficient to exclude birds.

Odoriferous additives may yield a similar effect. Acidity is not a pro-

blem for pH greater than about t, ;rod probably even as low as 3, and at

lower values the feet of birds are sensitive enough to the ions present that

they would be warned away from the pond unharmed. Nitrate toxicity is

probably a problem only in terms of birds drinking from the pond, unless

the concentration is quite high. Any serious problem in terms of hazards

to bird populations will probably be quite evident and remedial steps _such

a: screening) could be undertaken at the time. A screen mesh as large

as 4" by 6" should be adequate.

Splash can be avoided b v tmderwater liquid transfer -- easily acomp-

lished by the use of vented hoses or other means. Some complication

and expense, in terms of hardw:ire and operational procedure, will result.

Dilution of N204 should be accompiishcd at low temperature under con-

trolled cc.nditions to minimize vaporization :rod NO.) emission.

One pr,_duct of dissolution of N20 _ in water is nitrous acid tHONO) which

can combine with organic amines to form highly carcinogenic nitrosamines.

Thus, chronic human exposure to ponds containing ritrous acid or its

salts sh ou lfl ,b.e, a _..oJ.de_J, ........

L .........
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A. 3 LIQUID WASTE DISPOSA L CONCE PTS.

The purpose of the following pages is to present a number ,:,Ldifferent

concepts for arrangements of disposal ponds and treatment tanks. Conceptual

sketches and very brief discussions are presented, followed by a general dis-

cussion. No attempt has been made to select a '_est" concept.
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Preliminary Concept 1

Doul'le Pond with l"uel/N:20 4 Reaction Tank

.qerut)ber

]
Reactor

Oxidant

Pond

Neutra!iz*,n_
Chemical

Pond

J

Fuel N204

H,_O or Additives

Dilution

H,,O

Effluent to
Ultimate Disposal

I.ow

Co' ntr:ation

N204

Dilution ltoO

I _"_ Effluent to

f

l'ltimate Disposal

Fuel at,,1 .x.,() t _.r_, treated se!_a:..".te!.v. Each

is pt.edilute,t t'o "; level ti_:lt _viil e,.v_ttro safe reaction.
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Advantages _Concept 1}

En_ironmental impact is minimal due to closed tank treatment of fuel.

Allows use o_: a variety of oxidizing ,_ents for fuel.

ltaz:u-dous vapor concentrations are easily controllable.

Permits alternate use of ponds at bimonthly interv,'fls or as required for

anom:l.lies tone pond being serviced while the other pond is operating}.

Closed system minimizes odor problem.

Ability to accomodate m_om:tlies.

Disadvant,'.,es _Coneept 1)

Spm'e liquid pmnp bet-ween ponds is on standby most of the time resulting

in higher initi:fl cost and mainten:mee costs.

If mixing in pond should be required during the neutr:flizatioa step,

pumping-recirculation will require consider:O_le time (aeration would be

rasters.

A double pond requires addition:fl fencing/screening, thereby increasing

the initial cost.
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Preliminary Concept 2
Aerated Double Pond Without Reaction Tank

Scrubber _-)

Fuel _ lh-e-
N204 Dilution

Liquid
to

Pond

pH Control Chemical

Pond

Air

i

Chemical

Air

°2)Effluent to
Ultimate

Disposal

Iio0

___ Effluent to
Ultimnte

Disposal
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Ad_nta}_es _Concept 2)

Inexpensive design and construction.

Probably can be operated by louver-paid and less-skilled labor.

Disadvantages.{C oncept 2)

Toxic gas evolution {poor control of vapor).

Aeration of a d.Uute solution requires a longer aeration period, as re-

action rate drops with lower concentration of fu:-; as well as with presence of

low pH from N204 dtanping into pond.

Possible stagnant areas may form in pond resulting in increased aeration

time. P1,.lgging of diffusers is a distinct possibility.

if fertilizer value is to be saved, a higher concentration of NC3,/NO.'?. is

advisable to save on transport/spreading cost. Higher NO3/NO._ concentration

in pond complicates destruction of fuel. The NO,'_ content may have to be ox-
m

idized to NO 3 due to the higher toxicity of NO 2 and lower permissible disposal

levels {State & EPA regulations_.

System lacks flexibility and substitute oxidants such as O.,,. 03, C1 o,

etc. cannot be used econc"aically or for safety reasons.
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Preliminary Concept 3
Single Pond, Reaction Tank, Storage Tank

Reactor

Gas Vent

L!q,2i,_ to Pond

pH Chemical

N204

Po nd

0 .

"-- Effluent to
"" Ultimate Disposal

f

\

Overflow Storage Tank

(86,000 gab

Jl Ultimate Disposal(or NO_INO_ for
land use)

Adv:'mt,'_e: Those listed for Concept 1.

Disadvnnt,'q_. es: Less f_exible than Concept 1.

An overflow tank generally" requires more maintenance and is less

useful than a second pond.



Preliminary Concept 4

Double Ponds, Fuel Reactor, N204 Neutralization in Pond

Gas Vent

Liquid to Pond

f
!

' Reactor

Fuel

Oxidant

Pump

Limestone or NaOH H_O

Pond (

LLmestone or N.OH ........_4_

,2 °
Pond
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Advantages (Concept 4)

Those listed for Concept 1 except hazardous NO vapors .',.re not controlled.

Good flexibility of operation, allowing simple addition o_ N204 to the pond.

Installation/construction costs arc relatively low.

Double pond permits easy handling of anomalies lif prediluted).

Disadvantages (Concept 4)

Possible NO x vapor evolvement unless metering of N204 performed

very slowly into pond and introduced near bottom of pond to allow NO gas max-

imum time to dissolve (limited solubility of NO is a problem). As concen-

tration of NO3/NO o. builds up NO dissolution drops off ._harpl_ and NO evolve-

ment increases greatly, thus limiting amount of storage possible before sat-

uration of NO occurs (_xidation of NO to NO o to increase solubility in HoO is

not feasible in pond).

Limestone creates ._:.,lid waste handling and maintenance problems. How-

ever, NaOH or other neutrahzer increases metallic ion content of pond water

as well as cost.

Some form of agitation may be required to mkx materials.

Fencing/screening costs increased due to larger perimeter.



Preliminm-y Concept 5

Single Pond, Reactor for Fuel, Storage Tank

Clean Gas

Liquid to Pond

Reactor

<

Fuel

Pond

pH Control Chemical

-¢
HoO

m

N204

f Overflow Tank
... 86,000 Gel

Adv,nntnges: As for Concept 4.

Disndvnntagcs: As for Concepts 3 and 4 eor_bine_l,except,,_r fe,-cingt
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Preliminary Concept G

Double Pond, Separate Fuel, N204 Treatment Tanks

Clean G,'m

Liquid to Pond

Reactor

Fuel

pH Control Chemical

Liquid
to
Pond Gas

l_nnp [

ii

Predilution and

Neutralization 'rank

Pc nd

J
Disposal

Pc nd

N,_O 4

tI._0

Effluent to

Ultimate Disposal

;-------pI! Control Chem,eal

:\dvanta_es: As for Concept 1, Alh)ws m:tximally effective simultaneous

treatment of N_Ol and fuel.

Disadv:m_ More eXlmnsive to install ,and operate than any el the

prcee(lhl{ concepts.

I| - I .... -_
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_h'eliminm'v Concept 7
Single Pen:l, S,;p.'u'ato I,,.eaetion Tanks, Stor:Ige rank

I
i Reactor

(]as Vent

Liquid to Pond

_Ciean C.as Vent
Liquid to Pond,

II
--...M.

7

,_,Zfflucnt t . -
[ l, tm,l"o Dl_, t
posal

I{,,0
m

Oxidant pH Control Chemictd

¢

Pond

NoO.t It, tt,ation :nd
N,Sut r a! izat ion T :u'&

¢3verflow Stor:,_e Tank

86,000 Gal

n21_
'-_ Effluent tnI l. ltimatc l)is,,os d
I

It,,O

%tv:_nt',,-.'s. As for Ccmt.ept 6

I_c,lucctt land 'fencing/scrcemng requirements relative to concept _;.

Di,_adva,_t:_ges: Ove:'fh_w t tr& _vi[l requlr,, more ',u:linren:_rwe, ,_::d }_e

le_,_ ust'f'_l, th:v_ :_ secon, I ?,_::,t.

i I -T.......
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General Discussion

The preceding selection of "Preliminary Concepts" is not intended to be

comprehensive. Other combinations of the basic components - treatment tanks,

predilution tanks, aeratoL-s, ponds, overflow tanks, scrubbers, etc. -are

possible. In particular, the ponds might be aerated (and probably would be}

in any of the concepts.

In general, all the concepts can be regarded as consisting of the following

stage s:

Stage I, Predilution

Stage II, Treatment

Stage III, Temporary Storage

Stage W, Ultimate Disposal

Figure A. 1 shows schematically the four stages in a typical _,MI-I destruction

process.

The alternatives for fuel destruct:on were treated in Chapter 2. What-

ever the actual process of choice, it seems almost imperative that it be per-

formed in a closed vessel, with a scrubber, in view of the health factor3

involved (see Appendkx G.

The use of a closed vessel for N204 predilution and treatment is advan-

tageous from the point of view of environmental protection, but just how advan-

tageous -- hew significant the NO release associ_.ted with N204 addition dir-

ectly to the pond would be -- depends on a great many factors, including oper-

'ltional parameters and initial concentrations. Means of reducing NO release

during dilution are well worth further study.

We actually regard Stage III "_s being considerably more than just a

storage stage if .in oi_er, pond is employed. In the open pond, water plants can

be employed to remove nitrates and nitrites, heavy metals, and other contam-

inants from the water, leaving a product that should be essentially pure water,

safe for dispersal to a stream, open body of water, or the water table. Natural

evaporation will eliminate the need for actual liquid discharge in many ap-

plications. In addition, sunlight and bacteria act together to br!,_g about the

biodeg'radatior: ,ff trace quantities of fuel, solvents, and other contaminants.
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A need for disposal ponds was also identified in our study 6 of the disposal of

sLx waste materials used primarily as sc!vents, and there is no reason that

we can see why the same waste disposal pond could not be used for both pro-

pellants and solvents, provided the hydrazine fuels are adequately treated

prior to addition to the pond. The essential storage function -- to contend

with emergencies, and to spread out the discharge "wet a long period of time,

await proper discharge conditions, etc. -- could c. course be performed by a

tank as well as by a pond. Because of the other functions performed by the

pond, however, we regard the existence of at least one waste disposal pond as

being highly desirable.

The need for a second storage reservoir -- either tank or pond -- is not

well established. Itwould be essentially a redundancy, present in case of

abnormally large disposal requirements, or abnormally large rainfallthat

might lead to an overflow problem with a single pond, or for use in case of

maintenance -- routine or otherwise -- that might be required on the oper-

ational pond. Somewhat the same purpose could be served by a single pond with

a partitionto allow one side or the other to be pumped out. In addition, an

emergency holding pond could probably be prepared very quickly t_Jir.ga bull-

dozer and :trge plastic liner. Ifa redundant storage capability,is planned, the

trade-offs bet_veen a second pond and a large overflow tank must be considered.

The tank requires less land, less fence or screen enclosure, and might te

cheaper. On the other hand, itrequires more frequent inspection and main-

tenance, is less convenient for emergency dumping, and is more restricted in

terms of both vnlume and the uses to which itcould be put.

Ultimate disposal of the liquidand solid wastes directly as fertilizeris

a possibilitysince nitrates will result as finalproducts when Nr,O4_ is ueutral-

ized. This method presents some problems, however. As a fertilizer,the

finalproduct leaves much to be desired. In addition, there is a toxicityproblem

associated with the nitritesthatare also formed. There is also no practical

method of cLemically destroying or precipitating NO 2 and NO_, or converting

them to elemental or less toxic forms. As a result, biological assimilation --

6. Bowman, T. E. ; Sivik, H. ; Thomas, J.J. ; and Tiernan, L.R. : Final

Report, Phase Four, Contract NAS 10-8399, December 1973. Report No.
ME/75PHP-1, Florida Institute of Technolo_', Melbourne, FL 32901.
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in the ponditself -- looks increasingly attractive. In Florida and other parts of

the SoutheasternU. S., water hyacinths are anespecially likely -tgent for this

assimilation as this plant is a very hardy, fast-growing species that is

-knownto remo', _ toxic contaminants, including heavy metals in trace concen-

trations, from the water. Although extensive testing shouldbe performed to

verify this useof natural processes, we are quite optimistic that these plants

will prove quite beneficial, both as a means of producing the purest possible

effluent andas a potentially valuable end product in themselves in situations

where they can be conveniently harvested.

Figure A. 2 shows plan and elevation views of a simple aeration pond,

of a size suitable for many typical applications. A rough estimate of the con-

struction costs, exclusive of aeration equipment, pumps and piping, etc.,

is also shown.

Figure A. 3 presents the details of a smaller pond to be used o v Florida

Institute of Technology for further experimentation. For quantities that will

be involved with this pond, the fuel can be treated in a modified drt, m near the

pond edge. Primary emphasis, at 1,.ast in the early stages of prototype testing,

will be on the operatio_ of the pond itself rather than the treatment stage, which

has already been studied extensively in the laboratory.
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B. 1 ANALYTICAL CONSIDERATIONS

Questions of concern relative to fuel/oxidizer reactions in disposal ponds

include thermal considerations: how rapidly fuel and oxidizer can be ,added to

a pond without causing pond temperature to rise to a point that would be partie-

ulm'ly hazardous, or causing significant ,-unounts of toxic vapors to be evolved.

These considerations are important in establishing minimum sizes of ponds

for various applications.

A small rectanguhtr pond, 30 meters (100 ft} long, 20 meters (66 ft)

wide and 1 meter 13.3 ft) deep, was a.rbitrarily chosen for the purpose of

calculations. In the pond, fuel and oxidizer can be mixed in the proper ratios

to neutralize one another. The chemic,'fi reactions ,are exothermic and the

temperature of the pond will increase. The beats of reaction for the various

reactions of interest tfor initial ,xnd final statcs at standard temperature and

pressure} are as follows:

N2H 4 ,- 2HoOo. _ _ N.__ - 4HoO,

N2H 4 - N20 4 _., N2 - 2NO - 2H20

Ctt3N2H 3 * 5H,_Oo,. _ No. - SHOO. " COo_ 345.5

3N 2 - 3NO - CO 2 - 3H20 '_,q

i

CH3N2H 3 - 2N,204 _I_.7

ICIt.,),_N._H._ " _tt,.,O _ No _" 12H,_O " 2CO._ 535.9

,CIi3),_N,_H. _ - 3N20 4 _" 2N 2 - 4NO - 4li20 - 2CO 2 350.0

A temperatu e increase of 30°C was arbitrarily chosen for purposes

of calculation. If a large quanti_' of fuel and oxidizer is rapidly mixed in the

pond, assuming for the time being that there is no heat loss, the amount of

fuel plus oxidizer th-lt would raise the temperature of the pond 30°C can be

calcuhxtcd using the heats of reaction_ pcnd dimensions, and heat capacity of

water to give the following results:

3753 kg _1010 gad N2H 4 * 7_50 kg (1520 ,,.,r'al_H20 2

_;500kg ¢1700ga1_ N,_H,._- I5,_00kg t34:;O,gal)N2,O

2400 k_ _7:_5_al_ MMH - ,_,_50kg (1670 gad ll._O._

3q00 kg _I130 gql_ M.XlIt • I5,200 kg ,2_00 gal_ N,2Ot

153.6 Kcal/

Mole
85.9
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2000 kg (685 gad UDMH - 9060 kg (1750 gad H20 2

3140 kg (1050 gad UD._FI-I '- 14,500 kg (2640 gad N20 4

Next we consider the propellant flow rates necessary to maintain a

constant temperature difference of 30°C beV, veen the pond and its surroundings.

For steady state, the ener_" released by the reaction of the propellants enter-

ing the pond will just equal the heat transfer from the pond to the surroundings

plus the energy lost by the pond as a result of evaporation and the evolution of

gaseous reaction products. For simplicity, we shall neglect the latter effects;

the result _f this simplification will be a conservative estimate of the energy

transport from the pond.

The major po,-tion of the heat transfer from the pond will be in the form

of free convection from the surface to the air. For the pond dimensions we

are assuming - or any realistic pond dimensions, for that matter - and

a temperature difference on the order of degrees Kelvin or more, the con-

vection will be clearly turbulent, -rod can be estimated using McAdams'

approximate heat transfer coefficient for turbulent free convection in air from

a horizontal, upward-facing heated surface:

h = ._o( --At} 1/3

where At is the temperature difference in degrees Fahrenheit, and h is
O

in Btu/ft'-hr. OF. For our case, taking A t = 30°c would le:..: to an unreal-

isticaUy large answer in cases where the air itself might be quite hot. If we

take the '_aormal" temperature of the pond to be 20°C _68°F_ and the m_.ximum

allowable temperature to be 50°C (122°F_ and the air temperature to be 35°C

(95°F}, then the A t value for the convection equation _211 be 15°C (27°F_,

and the heat transfer will be

qconv : hA _._t = _.22J15.6786_20_q30_(27_ 4/3 -- 60,700 Watts

The heat conduction through the ground should also be estimated. The

conduction from an isothermal sphere of radius r buried in an infinite medium

is simply

where qc°nd_t = 4 _ r k ._ tis the d_fference in temperature between t".. :Jhere and the medium

f:u" :txva_, and k is the conductivity of the medium. We can approximate our

pond as a hemisphere at the surface of a semi-infinite med!.um whose properties
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are those of sandy soil, andvery crudely estimate the heat transfer as being
half that gi,,_enabove:

qcond --_r k ]/_t,

where r is an effective radius based on the surface area of our rectangular pond

of length L, width W, and depth D:

-_LW _- 2LD - 2WDr= 27T
=_/120) (30_ - _:2)c30_ 1,1) _- (2) t20)!1)

Y 27T

= 10.56 meters

.'. qcond = 2T_110.56)(.6_(30} = 1200 Watts,

a figure sufficiently smaller than the convection figure that we can abide the

very crude method of analysis rather than attempting a more refined analysis.

Using the estimated total heat transfer from the pond, qtotal = 61,900W,

we can now calculate the flew rates of fuel and oxidizer that will just maintain

the 30°C temperature rise in the steady state. Letting H be the enthalpy ot

reaction for any given reaction, in kcal per mole of fuel, and .M be the molecular

weight of the fuel Igrams per mole_, than the mass flow rate, rh, in kg/hr, is

_h 'otal M [ 3600sec/hr ]= H (1000 g,/kg) (4186 watt sec/kcall

and the mass flow rate of the oxidizer may be calculated in terms of the fuel

in the usual manner. The results are as follows.

ll. 1 kg (2.92 gad N2H 4 -23.6 kg (4.34 gad H20 2

19.9 kg _5.22 gal) N2H 4 - 59.5 kg {10.$ gad N20 i

7.10 kg _2.14 gad MMH _- 26.2 kg (4. $2 gad H20 2

11.2 kg _3.3S gal) MMH - 46.7 kg (8.51 gal) N20 4

5.97 kg (2.01 gab UDMH - 27.2A{g _4.97 gal) Hoe o

9.14 kg ,:_.07 gal) UDMH - 43.8 kg (7.97 gad N20 4

per hour

per hour

per hour

per hour

per hour

per hour

It should be noted that these figures would not increase significantly were

the depth of the holding, pond increased, but would rise in almost direct proportion

to the surface area of the holding pond.
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B.'2 EXPERIMENTS

A brief series of laboratory experiments was .xlso performed to obtain

better idea of the temperature rise involved in neutr:flization of small quantities

of diluted hydrazines with diluted oxidizers. The concentration of reactants was

from 1 to 20_. It was desired to determine if a prohibitively" high temperature

rise occm-red on mixing fairly strong concentrations. If temperature rise was

not excessively high, it was reasoned that reaction tank or pond volumes could

be made smaller by designing for relatively high concentrations.

Solutions of MMH, N2H 4, N204, IRFNA, urea :rod acetic acid were pre-

pm'ed in va.rious concentrations. These gener_ly included 20':-, 10", 7.5q and

1_ by weight.

A volume of 50 ml of each reducer (M.MH, N2H 4 or urea) was poured

into a beaker confined within a fume hood. The temperature of the solution was

noted. The entire measured volume of diluted oxidizer (N204, IRFNA or

acetic acid) corresponding to the stoichiometric requirement was ,t_ured at once

into the beaker. The beaker was swirled by hand and agitated with a thermom-

eter to mix the react:rots. The peak temperature att.--dned was observed and

recorded as _T (pete temperature mhms initial temperatures. No ailowm_ce

was made for heat absorption by the. beaker or heat losses to the atmosphere.

The volumes of solutions used appe_ ;_ove each reactaDt in the following

equations:

3NO - CO._ - 3H.,O

2NO - COo - 4H_O

50 ml i00 ml

_CH. 3) N2H 3 - ',N.20, _ 2N2

50 ml 13_; ml

_CH:]) N2H 3 - 2HNO 3 _ N 2

50 ml 14 %ml

N.,t{4_ N204 _ N,,_ +

50 ml 197 ml

N2tt 4 - HNO:_ _ 1/2N 2

50 ml 79 ml

NH2_ 2 CO N204 _ NH_NO 3

50 ml 54 ml

INt{o_._. - CO tINO.,,, _ NII4NO 3

2NO 2H_,O
m

- 3NO

- CO., - N.,
-- m

CO., 2NO
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C. 1 INTRODUCTION

Engineering design considerations of aeration ponds must depend to a

considerable extent on the size of bubbles formed. The purpose of this ap-

pendix is to present briefly the existing theories of bubble formation, growth,

and detachment, and of the rise of small bubbles through bodies of liquid.

For simplicity, we shall begin by considering the formation of a bubble

resulting from the introduction of air (¢r other gas) very slowly through a

single, isolated, small hole. '_mall" will mean smaller than the base of the

bubble at the instant of detachment. If the hole is located in a horizontal sur-

face, a side view of the bubble will be somewhat as shown below:

/1_ r_ X Liquid

The Z-axis is an axis of symmetry. The contact angle, @, is defined as the

angle between the solid boundary and the tangent to the bubble surface at its

intersection with the solid boundary. The "oase" refers to the portion of the

bubble bounded by the solid surface rather than the liquid-vapor interface. In

the case of static equillbriumj the bubble is subject to two exterflal forces:

the resultant of hydrostatic pressure on the water-air interface and air pressure

on the base of the bubble, which is a buoyant-like force acting to remove the

bubble from the surface; and the resultant of surface tettsion at the solid-

liquid-gas intersection, acting to hold the bubble on the solid surface.

Simplified solutions based on assumptions regarding the bubble shape ate

tempting, but generally of little value and in fact simplified models are usually

self-conti'adictory. One complication is the fact that Archimedes' Principle

does not apply, sifice hydrostatic pressure does not act on all parts of the bub-

bl_ sui'face. Therefore the relationship of base area to interface area and
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orientation, and the interrelationship of both with contact angle, is important.

Considering that the llquld-gas interface in the vicinity of the solid surface

becomes quite distorted Just prior to detachment of the bubble, it is easy to

understand why simplified models have not been successful in predicting the

volumes x)f bubbles leaving solid bowldaries.

This problem is an important one in boiling heat transfer, and at least in

the static equilibrium case straightforward solutions exist, as discussed in the

following section. In the case of aeration, consideration_ of bubble size are

Important in various bays.

1. The ratio of bubble surface area to volume is inversely proportional

to diameter for slmflarly shaped bubbles, so that smaller bubbles have

relatively more surface area for the air oxidation reaction to take place.

2. The air pressure in the bubble is inversely proportional to the

curvature of the surface, and hence to diameter for similarly shaped

bubbles, so that pumping requlrements per unit volume of air in the

pond are higher for smaller bubbles.

3. Assuming that the air always re_ches pond temperature prior to

leaving the aerator, the density of the air in the bubble is linearly pro-

portional_to the pressure, and henco inversely proportional to diameter,

so that surface area per unit mass of air in the bubble is Indepelxlent of

size, and pumping requirements per unit mass of air or per umt surface

area are higher for smaller bubbles (even more So if the smaller orifices

required for the smaller bubbles are taken illto consideration, )

4. Smaller bubbles rise more slowly through the pond, as discussed in

a later section, and hence there is more time for the $'eaCtion to take place.

S, On the other hand, both the faster motion and larger size of larger

bubbles help generate circulation ia the pond, bringing the contents of the

po_cl L_to contact wit,i the air bubbles soonei' and zPore frequently.

It theref:)re seems apparent that there is no obvious, easy answer to the

question of best bubble size. A carelult detailed optimization would have to be.

performed, itl _.er., j ot poiid depth and other pond parameters. An e._ceptiofl

would be a case -..e the bubbles contain H204 or other toxic vapors, so that

the only Import_xnt consideration would be co_nplete reaction prior to the bubble

reaching the pond surface, and selectioJi of the smallest feasible bubble size is

indicated.
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C. 2 ANALYSIS

The preceding section discussed the need for applying force equilibrium

considerations at all points of the bubble surface, .rather than trying to assume

a shape and apply an overall force balance. Performing a force b.alance on a

surface element results in_the capillary equation I

si g(  02° )z
I (i)

where

X, Z are coordinates as shown in the sketch of the preceding section
X

R, _ are principal radii of curvature, R in a plane.containing the

axis r-of symmetry

_)ls angle perpendicular from the interface makes withthe which the
dr

the axis of symmetry, measured from the apex ((_) = 0 at S = 0, Z = 0)

b is the radius of curvature at the apex (origin)

P 1' P2 are the densities of the gas and liquid, respectively

(f is the surface tension at the :Rt2rface

g is the gravitational acceleration

This equation has been treated by many authors, with most modern work

patterned more or less after the work of Bashforth and Adams, whose book 2

reported the results of numerical calculations dating from 1855. This work is

also believed to be the first application of Adams' predictor - corrector method,

a numerical technique that is still useful for some types of problems. In es-

sence, their work amounted to starting at the oi'igin and tmmerically calculating

the shape of the surface for a given value of b and the dimensionless constant

The results we_'e families of possible surface shapes for each vaiue of_ con-

I. A detailed derivation, including luore generality regarding orientation of
the solid surface relative to gravity, has been presented by B.K. L_trkin.. "Nutn-
erical Solution of the Equation of Capillarity," Journal of Colloid a_d InterfaCe
Scieflce t Vol. 23, pp. 305-312 (1967).

2. Bashforth_ F., and Adams, J.C. : An Attempt to Test the Theories of
Capillary Action, UftiVersity Press, Car_bridge, England, 1883.
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sidered. Boundary conditions would be applied by truncating a curve at a point

where its slope corresponds to the desired contact angle.

These results were applied by Wark 3 to the specific calculation of sizes

and shapes of air bubble_ in water at 20°C. Of even more interest for our

_ppl!c_tlon is the work of Frltz, 4 who developed a technique for using the Bash-

forth and Adams results to find the maximum (detachment) sizes of bubbles as

a function of contact angle and capillary constant. Frltz's results are repro-

duced in Figures C. 1 and C. 2, In figure C. 1, the c_tpiilary c, nstant is

In figure C. 2, Curve 1 is the case of primary interest: air bubbles in water

at 20°C,

Modern investigators have used the digital computer to extend Frltz's

results to other cases, and i_ the process have verified the validity of the

Fritz and Bashforth and Adams calculations. In particular, Larkin b has

developed a method of solution for nonaxisymmetrle surfaces _ud gTavltatlo_i

accelerations that are arbitrary in both direction and magnitude, and Concus 6

has described liquid-gas interfaces in right circular cyl_d_.rs. This _ast

case might be applicable in the case of aerators with larger orifice sizes, since

the interface inside the circular orifice might be of primar_ interest.

3. Wark, I.W. : "The Physical Chemistry of Flotation. I_ TII_ Significance
of Contact Angle in Flotation." Voi. 37, p. 623-644, (1933).

4. F,'itz, W. : "Bereehnung des .Maximalvolu.-nens yon Dampfb_.aSen" ("Cal-
culation of the Maximum Volumes of Vapor Bubbles'). Physik. Zet,*sch1".,
Vol. 36, pp. 379-384 (1935).

5. Op. ctt. See also McGrewt J, L, t and Larki_, B.K, : "Cryogenic Liquid
_xperiments in Orbit, Vol. Ii: Bubble Mechanics, Boiling Heat Transfer, aiid
PtopeIlafit T.'tdk Venting if_ a Zero-Gra_-tty Environmer_t." NASA CR-652,
December 1966.

6. ConcuS, P. : "Static Menisci in a Vex.tical Right Cltcular Cylinder."
J, Fluid Mech,, Vol, 34, pp, 481-495 (1968).
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C. _ DISCUSSION

The results above show that small bubbles result from small values of

either surface tension or contact angle - given of course, the essential pre-

requisite of a small pore size relative to the size of the bubbles being formed.

Surface tension is a temperature-dependent property of the watee-air system,

but surface tension modifiers - detergents, for example - a_e readily available

for water. The effect of these "surtactants" is to reduce the surface tension.

Their effect on newly forming surfaces is unknown, however, at least to the

present author. Contact angles, on the other hand, can be varied over a wide

range,

The contact angle iS a temperature-dependent property of a solid-liquid-

gas system. Current knowledge of c_ntact angles is due, in large part, to the

work of William A. Ztsman and various coworkers over a period of many years.

Their results were summarized by' Zisman 7 in 1964. One simple e._pression

for contact angle that resulted from this work has proven useful fn a great many

cases:

oo 0 -- O'o ,
where k and O"° are empirical constants, (_c being referred to as the

"critical surface tension" of the solid surface. _,is the actual surface tension

of the liquid-_us interface. If(_ q (_t,, the contact angle is

£,d

near zero.

Solid surfaces are characterized as being '"nigh energy" or "low energy" ac-

cording to whether their critical surface tension values are high or low,

respectively. In general, metals are high energy surfaces, while the lowest

values of _ are associat,_: with highly fluorinated or_.nic polymers and
v

other organic compounds made up largely of C F 2 and C F 3 groups.

To achieve small values of 0, then, it is apparent that metallic surfaces

with large values of _ are desirable, in the case of water, however, there

is a particular problem that has been noticed by most re_ea_'chers concerned

with liquid surface phenomena.

I u

7. Zisfnan, W.A. : "Relation of the Equilibrium Contact Angle to Liquid arid

Solid Constitution." In '_ot_tact Angle, Wettabiiity and Adhesion," .Advan,..es in
Chet_ist_'y series 43, R.F. Gould (Ed.), American Chemical Society Applied
Publications, 1964, p.I.
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Becau.3e of tIie unusually high surface tension of waterj the contact angle

between a water-alr interface and a metal surface fluctuates over a wide range,

as indicated by equation (3) when the term in brackets becomes the difference

between two large numbers. An additional aspect of this problem is discussed

by Frohnsdorff and TeJada 8 in the following terms:

'_f_e meastWement of the true contact angles of high surface
tension liquids such as water on high energy surfaces such as

metals is difficult becauSe of the strong tendency of the metals to
adsorb organic vapors. Even a small f_action of a monolayer of
orgaaio molecules appears to be sufficent to increase the contact
angle of water on many surfaces. _."

Perhaps the first e,_ensive treatment of this problem was that of Trevoy

and Johnson 9 in 1958. The problem became a persistent annoyance in connection

with the zero-gravity _xperhnentation of the early 1960's carried out in support

of spacecraft propellant taflk design efforts, and as a result the Lewis Research

Center funded an extensive evaluation of procedures for cleaning metal surfaces

to obtain "true" contact angles in laboratory work 10. The conclusion was that

the best procedure was vapor degreasing followed by immersion in an alkaline

cleaver and thorough rinsing with water.

For cooling pond applications, if small bubbles are desired it seems likely

that some benefit could be derived from using metal pipes for the actual aerator,

degrp'..w.g them prior to installation, insuring that they remain submerged In

a somewhat aJkaline pond, and installing an oil trap on the compressed air line.

For the sake of computation, however, it is probably prudent to assume the

worst, which is a contact angle on the order of 80 ° to 100 °. Contact angles re-

ported by Frolmsdorff and Tejada for water at 20°C on cleaned and polished metal

surfaces range from 8 ° to 12° for copper and aluminum, and from 16° to 20 ° for

stainless steel.

8. Frohnsdorff, G., and TeJada, S.B. : "Measurement of Contact Angles o.nd
Evaluation of Surface Coatings." Final Report, Contract NAS3-13725, NASA
Lewis Research Center. NASA CR 72975, August 1971.

9. Trevoy, D.J., and Johnson, H., Jr. : "T_e Wate_- Wettabllity of Metal
Surfaces." J, Phys, Chem,, Vol. 62, p. S_$ (].955).

10. Schwartz, A. M., and Ellison, A.H. : "The Effect of Surface Contam-
ination on Contact Angles a_td Surface Potentials," NASA CR 54708, 1966.
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C.4 LARGER ORIFICE SIZES

One assumption in our discussion thus far has been an aerator orifice

size much smaller than the bubble size. Curve 1 of Figure C. 2 shows that, at

= 100 °, the maximum volume is about 90mm3_ corresponding to a sphere of

5.5 mm diameter. Hence this size bubble would not be expected to emanate

from orifices larger than about this size. In the case of smaller contact angles,

the restriction on hole size would be more severe.

If we consider the air hole to be sharp-cornered as shown in the sketch

below, the contact angle ceases to be the controlling boundary co._dition if the

inte_ace is attached to the edges of the hole. Rather, the bole dL_meter pre-

dominates. A meanin_ul analysis would probably have to follow an approach

similar to Fritz's, seeking in this case the largest member of the f_mily of

curves that can be spanned by the o_lfice diameter, rather than the largest

member that will allow the requisite contact angle to be realized. (Note trat

the interface remains attached to the corner as its local orientation changes

through 90 °, for constant contact angle. )

Without attempting to actually solve the problem, we may surmise the

following. If the hole is considerably smaller thafl the rr,aximum bubble dia-

meter calculated by Fritz, the bubble will reach the top of the hole, grow

for a p_i.iod while attached to the coi'ner, and then spi.ead across the horizontal

surface as shown in the sketch at the beginning of this AppendL, c. Once it starts

to spread across the horlzotltal surface, the Fritz aJmlysls becomes applicable,
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and eventual detachment should come when it reaches the size pr,_licted by Fritz.

For increasingly larger hole sizes, a point is reached for which the bubble

grows to Fritz's maximum volume while still attached to the corner, a.xi hence

cannot spread across the horizontal surface but detaches instead. For sti!l

larger holes, the bubble probably grows on the corner to a value somewhat

greater than Fritz's maximum volume and detaches. As hole size increases,

however, a point is reached for which a stable interface inside the hole is

impossible.

This last case is entirely analogous to the well-known experiment in which

water is picked up in a soda straw closed at the top by one's finger. The w_ter

in the straw is supported by air pressure, but only because the lower air-water

interface is stable. The ex_eriment cannot be repeated with a larger diameter

tube, even though air pressure is equally capable of supporting the water, be-

cause of instability of the lower interface. It is also entirely analogous to the

problem of liquid propellants in cylindrical tanks under low-g,._tvtty conditions,

and hence the solution is by now well-known, and experimental verification is

abundant.

The first comprehensive analysis was that of Reynolds, Satterlee, and

Saadll, 12, 13 results of which are pt'esented in Figure C. 3. The dimensionless

11. Satterlee, H.M., and Reynolds, W.C. : "The Dynamics of the Free Liquid
Surface in Cylindrical Containers Under Strong Capillary and Weak Gravity Con-
ditions." Tech. Rept, No. LG-2, Dept. of ._Iech. Eng., Stanford Univ., May 1964.

12. Reynolds, W.C. ; Saad, M.A. ; and Satterlee, H.M. : "Capillary Hydro-
statics and Hydrodynamics at Low-g." Tech. Rept. No. LG-3, Dept. of Mech.

Eng., Stanford Univ., May 1964.

13. Reynolds, W.C., and Satterlee, H.M. : "Liquid Propellant Behavior at

Low and Zero G." Chap. I1 in The Dynamic Behavior- of Liquids in Moving
Containers t H.N. Abramson, ed., N._SA SP-106, 1966.
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parameter pgR2/d is known as the Bond number, p replaces the (/02- Pl )

density difference of earlier pages since Pl _:"_02 in most cases of interest.

The critical Bond number for 0 = I00 ° is 3.33, giving a critical diametel, of
3

10.0 ram, compared to Fritz's maximum bubble volume of 90 mm . The dif-

ference is more striking at smaller contact angles. At 50 °, Figure C. 2 gives a

maximum volume of 11.7 mm 3, corresponding to a sphere of 2.8 mm diameter;

the critical Bond number from Figtu'e C. 3 is 2.73, giving a critical hole dia-

meter of 9.0 ram.

The conclusion is that these larger holes will produce larger bubbles up

to the point where the hole diameter reaches the criticalvalue calculated from

the data of Figure C.3. For holes larger than thiscriticalsize, the a_rator

will presumably produce-bubbles whose size is governed by other factors be-

sides hole size - flow rate and tube dimensions, for example - with a good

likelihood thatbubbles smaller than the opening size will be produced.
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C.5 DYNAMIC EFFECTS

So far, we have assumed that staticequilibrium conditions prevail at the

time of bubble detachment. Ifthe bubble grows rapidly, dynamic effects can

be important in three ways:

I. Ifbubbles leave the aerator as a closely-spaced stream, due to

rapid growth and detachment, they generate liquidmotion away from the

aerator in the vicinityof the bubble source. This liquidmotion then tends

to sweep newly-formed bubbles off the aerator surface before they reach

their staticequilibrium maximum volume.

2. The growth of the bubble itselfmight generate liquidmotion away

from the wall. Ifthe volume changes linearlywith time, then the linear

dimensions of the bubble change rapidly at first,more slowly as time

goes on. Therefore in the early stages of bubble growth, the rapid

motion of itstop surface away from the wall can generate liquidmotion

that then tends to drag the slowly growing bubble in a later stage of

de'_lopment off the wall.

3. Contact angle in the dynamic case is known to be a function of the

velocity of the contact line, and also differsdepending on whether the

contact llne is moving toward (advancing) or away from (receding) the

gas phase - a phenomenon known as contact angle hysteresis. Investi-

gations of dynamic contact angles to date have primarily been concerned

with advancing contact angles, whereas the receding contact angle is the

important one in ",hecase of a growing bubble. The velocity dependence

was demoDstrated experimentally in 1962 by Rose and Heinz 14, who con-

sidered flow over a dry surface, The problem was then taken up by

Friz 15, who analyzed the advance of a liquidover a previously-wetted

surface. The num_:rical results led to the conclusion that contact angle

depends on contact line velocity U ° according to

14. Rose, W,, and Heinz, R.W. : "Moving Interfaces and Contact Angle Rate-

Dependency." J. Colloid Sci., Vol. 17, pp. 39-48 (1962),

15. Frlz, G. : "Uber den dynamlschen Randwinkel Im Fall der vollstandigen

Benetzung." Zelt. fur Ange w. Physik, Vol. 19, pp. 374-378 (1963).
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being the viscosity. Ellison and TeJada 16 performed a series of

experiments in which liquid advanced over a d,'y surface, and concluded

that in this case the data could be correlated by the relation

0 IAtanh (CUo) + D Uol/3,

A, C, and D bein._ empirical coefficients. The Fritz equation was found

to give poor agreem_:_t wl_h their results because of the difference in

initial c_nditions. A set of experiments in which the situation analyzed

by Fritz was carefully reproduced was carried out by Coney and Masica 17,

who concluded that the Friz equation "is adequate," The results are

shown in Figure C. 4; tb.e slight trend toward higher contact angles than

predicted was thought to result from experimental error.

Ill summary, it appears that dynamic effects will result in smaller bubbles

than predicted by static equilibrium considerations, except possibly for a dynamic

contact angle effect in the case of rapidly growing bubbles. Even here, it is

likely that just as advancing contact angles increase with velocity, receding con-

tact _',ngles should decrease with velocity, which would also result in smaller

bubbles leaving the aerator.

16, Ellison, A,H,, and Tejada, S,B, : "Dynamic Liquid/Solld Contact Aiigles
and Films oi_ Contaminated Mecu_'y," NASA CR 72441, July 1968.

17. Coney, T.A. and Masica, W.J, : "Effect of Flow Rate on the Dynamic
Contact Angle for Wetting Liquids." NASA TN D-5115, March 1969,
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C.6 OTHER EFFECTS

In summary, we first considered the static equflibrlum of a bubble as-

suming the hole to be too small to be a consideration, then looked at the ef-

fects of larger holes, defining essentially three regimes - hole to small to be

significant, hole-dominated, and hole too large to be significant - and finally

proceeded to consideration of dynamic effects. Of the other effects that might

be important, the most significant is the proximity of other bubble sources,

since we have always considered bubbles emanating from single, isolated

holes,

Other nearby bubble sources can have at least two effects. By adding to

the vertical fluid motion in the vicinity of the aerator, they tend to reduce the

bubble size still more c._ bubbles are pulled away from .he surface before

reaching their :;tatic equilibrium maximum size. On the other hand, if the

sources are very close there is a possibil_ty of bubble coalescence, resulting

in larger bubbles than predicted.

The potential energy associated with the surface of a free bubble is (_'A,

the product of surface tension and surface area. If two spherical bubbles, each

of radius R 1, coalesce to form one bubble of radius R 2, conservation of mass

for the air within the bubble requires

2 _)I R13= P2 R2 3

and if we assume the process to be isothermal, the ratio of densities will equal

the ratio of pressures,

yielding

._ P2 Pa + 2(_/R2-- =Pa+ 20 i

1/3

( Pa + 20e/R1 )R 2=R 1 2 Pa + 2(_/R2

The limitilig cases, (PaR1/(_) --_ 0 and (PaR2/(_) -'_ o0 yield the result

21/3R 1 _ it 2 _ 21/2R 1
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and hence if we compare the initial and final potential energies,

P.E. 1 = 2(4# R12) a , P.E.2 = 4 IrR22a

the result is

-i/3 P.E.
2 -_ 22 z .

P.E. 1

The conclusion is two-fold. First, two bubbles that come into contact

with each other will always tend to coalesce because of the resultant decrease

in potential energy. Second, the resultant bubble wiU be at least twice the

volume of each original bubble, and perhaps as large as 23/2 = 2.83 times the

bolume of each original bubble.



C.7 BUBBLE RISE VELOCITIES

3O5

Once the bubble detaches from the aerator surface it rises through the

nond at a velocity depende-t on the size of. the bubble. The study of bubble

rise velocities was especially active in the 1950'S, with particularly significant

papers being those of Haberman avd Morton 18 (experimental) and Moore 19

(theoretical),

Bubble rise velocity was found to depend on Reynolds and Weber numbers,

R- 2re up/
w : 2re / d

and also on a third dimensionless parameter, M, defined as

where

reffi

U=

j0=

(_'=

equivalent bubble radius, re

terminal velocity

liquid density

liquid viscosity

surface tension

= (3V/4YO 113

g = gr'.tvitational acceleration

A quote from Moore will serve to summarize the Haberman and Morton

results very concisely:

"For low M liquids (M.c 10 -8) the terminal velocity at first increases

rapidly as r e increases, achieves a maximum and after falling to a minimum

rises gradually again. Fo_ high M liquids (M _ 10 "3), the terminal velocity

increases steadily with r e, though the rate of increase falls off at a fairly well

defined value of r e .

"For low M liquids the shape is at first sphel'lcal, then increasingly

oblate, then, at about the radius cox'responding to the maximum velocity, the

shape fluctuates rapidly about an oblate form until, for very ia_ze values

i

18, Habertnan, W, L., and Mcf'ton, R.K. : David Taylor Model Basin Rept,
No, 802, 1953,

i9. Moorei D.W.: '_f"ne Rise of a Gas Bubble in a Viscous Liquid," J..#,
Fluid _ech., V.-.'.. 6, pp. li3-i30 {1959).
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of r e, the bubbles attain a striking umbrella shape which is quite steady at its

frontal stu'face though the rear of the bubble fluctuates. These spherical cap

bubbles were the subject of an important investigation by Davies and Taylor 20

(1950). For high M iiquids the spherical cap shape iS achieved without the

bubble surface ever becoming unsteady.

"For low M liquids the bubble trajectory is at first rectilinear, then,

at about the bubble radius for maximum terminal velocity, both planar zig-zag

and spiral trajectories are observed. Finally, the spherical cap bubbles rise

in very nearly linear trajectories. For low (sic) M liquids only rectilinear

trajectories are observed. ,_21

Figures C, 5 and C. 6 show the Haberman and Morton results in terms of

the drag coefficient of the bubbles as a function of Reynolds and Weber numbers,

with M as a parameter. The expression for terminal velocity in terms of drag

coefficient, C D, is

_/Sr e g

U = v3 C D'

Use of this information to find terminal velocity is of course complicated by _e._

fact that R and W are defined in terms of this velocity. The present author can

only quote without comment Moore's statement that 'tit is more illuminating to

consider the drag coefficient C D rather than U..."

These results show the Reynolds humbler v.ar_iation is independent of M

except in the range 10oRal03, where:as the Weber number dependence varies

greatly with M in terms of the location, but not shape or slope (in the log-log

plot) of the curves.

Moore's a_alySis produced the significant result that the drag coefficient

for a spherical bubble iS given by

C D = 32/1t,

subject to the restrictions that R is large and W small, and showed that both con-

ditions can be satisfied in low ,_! liquids. Comparison with the experimental

20. Davies, R. M., and Taylor, G. I. : "The Mechanics of Laige Bubbles

Rising through Extended Liquids and through Liquids in Tubes, tt Proc,l:toy.
Soc, A, Vol. 200, pp. 375-390 (1950),

21. Moore, D.W., op, cit,
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Figure C. 5, .Moore's presentation of the Haberman and Morton results:

Reynolds number dependence
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results showed good _greement except for .'Islightdisplacemen{ of the theoretical

curve below experimental v_tlues.

Extension of the theory to non-spherical bubbles was also treated by Moore,

but the results were less conclusive and are feltto be beyond the scope of the

present discussion.

The expression C D = 32/11 can be solved for U, giving

2

-I
which gives, for waterer 20°C,

U = 1._3, re2 meters/second,

"\

if r e is in mm. /_)
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D. 1 FLOW RATES AND SIZING OF ABSORPTION SCRUBBERS

The performance of a gas scrubbing operation involving only solution of a

contaminant with no chemical reaction is limited by the equilibrium relation be-

tween the contaminated gas and the contaminated sorubbing liquid.

For scrubbing gases, the operating lines _nd initial and final points are

constrained to lie on the side of the equilibrium line on which the contaminant

concentration in the gas is greater than equilibrium concentration at any given

concentration of contaminant in liquid. The slope of the operating line on a gas

phase concentration vs. liquid phase concentration curve is given by the ratio of

liquid flow rate (moles/area/time) to gas flow rate. Thus if the equilibrium

curve is known, and the flow rate and degree of contamination of the entering

gas is known, and the permissible degree of contamination of the leaving gas is

given, the minimum liquid flow rate (liquid flow rate for an infinitely long scrub-

ber) can be found. 1

The foregoing obtains for cocurrent as well _s countercurrent flow

scrubbers, though we are here primarily concerner= with the latter. The sche-

matic diagram (Figure D. 1) shows an example of an et_uilibrium curve and an

operating curve for a countercurrent scrubber. As a very rough approximation,

the length of a scrubber is inversely proportional to the distance between the

equilibrium and operating lines. It is conventional that the equilibrium and

operating lines be approximately parallel, as the equilit'_rium lice permits. With

the equilibrium l_ne known, the g_s flow rate and _s initial contan_ination con-

centration also known, and with the outlet gas contamination specified, the oper-

ating line for an infinitely long ,'_crvhber will be the straigh_ line passing through

the specified concentration points, tangent _lt one or more points to the equilib-

rium line, and elsewhere above the equilibrium line. Since the operating line

and the gas flow rate are known, and the line's slope is the ratio of liquid and

gas flow rates, the minimum liquid flow r_tte is determined. For a finite-

length scrubber, the liquid f_ow rate is necessarily greater than for an infinitely

long scrubber.

ml

1. Calvert, Seymour: '3ource Control by Liquid Scrubbing." Chapter 46 in

Air Pollutto, r Vol. III, ed. by Arthur Stern, Academic Press, New York, 1968.
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Equilibrium car_,es for air and water contaminated with N2H 4, MMlt,

and NO 2, at room temperature, are presented h: Figure D. 2.

The concentration of noxious gases immediately over a solution is pro-

portional to the vapor pressure of the liquid. The vapor pressure can b," es-

timated from Raoult's law which states that th_ partial vapor pressure of any

constituent of a solution is equal to the vapor pressure of the pure substance

multiplied by the mole fraction of that constituent in solution. Figures D. 3,

D.4, and D.5 show the partial pressures in air for mixtures Gf the various

propellants with water as c0Iculated using Raoult's law, and also the vapor

pressure for the solution. (This latter function varies linearly from the vapor

pressure of pure water, on the left side, to the vapor pressure of pure propel-

lant on the right side. )

Once the vapor pressure is calculated, the number of moles of each gas

per liter can be approximated by the ideal gas law. The weights of the gases

are then calculated and the weight concentrations can be fotmd. The concen-

tration of the vapor in air is a function of the concentration of the contaminant

in water. The following results were calculated for 1 atm., 25°C •

For HNO 3,

wt conc in air

For MMH,

wt conc in air

For N2H 4,

wt conc in air

.05 (wtconc ivwater), wtconcinwater ._ .1

_- .0I (wtconc in water), wtconcinw_ter -_ .1

._ .025 (wt conc in water, wt conc in water _ .1
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Figure D.2 Equilibrium curves for hypergolic prrpellnnts in air and water.
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D.2 DESCRIPTIONS OF _)ME ABSORPTION SCRUBBERS

In the countercurrent packed scrubber, the gas stream moves upward in

a direction opposite the liquid stream which is moving downward through a packed

bed (Figure D. 6). This method provides intimate contact between the liquid and

gas streams within the packed beds and gives best results when the scrubber is

ulcerated at the maximum allowable pressure drop, At high pressure drops max-

imum turbulence is obtained, enhancing the quick absorption of the gaseous con-

taminants in the liquid stream,

A significant advantage of countercurrent flow is that the gas stream,

rich in contaminants, comes into contact with the spent liquor at the bottom of

the packed beds, while the fresh liquid coming in at the top of the scrubber is

in contact with the least contaminated gas, This characteristic provides a

fairly constant potential throughout the packed bed for driving the gaseous con-

t_t_mnts into the scrubbing liquid. There is also less chance that the dissolved

gases will be stripped from the liquid.

Countercurrent flow scrubbers are more expensive to operate because of

the high liquid consumption and high pressure drop. Since this design handles

the tougher problem of removing gases, the higher cost of operation is balanced

by the highly efficient absorption capability of removing gases with low solu-
2

bflity.

A detailed presentation of the calculations involved in establishing scrub-

her size in terms of incoming and outgoing mole fractions of contaminant in the

liquid and gas streams, and total contaminant quantities, is found in the chapter

by Seymour Calvert cited previously. Among the concerns are contact surface

area, packing density, number of transfer units, height and cross-sectional

area of the tower, Packing density is the ratio of total surface area to volume

for the packing. For example, one inch Raschig rings have a packing density

fo 55 fl-1.

Descriptions of some absorption scrubbers that have been used in the past

for hypergolic propellants are presented on the following pages. More recent

advances were covered in Sections 2.12 and 3.9.

2. '_ountercurrent Flow Scrubbers". Ceilcote Technical Bulletin 12-3,
February, 1974.
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Hamilton - Standard's Gemini and Saturn Scrubbers

Hamilton Standard provided fuel-handling systems for the Gemini and

Saturn programs, which it:eluded scrubbers for the removal of hypergolic pro-

pellants which would otherwise be vented to atmosphere. Gaseous nitrogen-

beart-g fuel or ox'idizer vapors (different scrvbbers of the same design were

used for fuels and oxidizers) were put through the scrubbers, which met design

specifications calling for contaminant concentration of less than 5 ppm N204

or less than ._.ppm MbIH at the outlet of the system, This outlet is downstream

of a dilution fan/mixing chamber where the scrubber effluent is mLxed with

fresh air in a 100:1 ratio, thus reducing contaminant concentrations by a factor

of one hundred.

The scrubbers were designed to accept up to 10 SCFbl at 106 ppm, up to

60 SCFM at 1500 ppm, of N204 - or MMH - contaminated nitrogen. One may

infer that the scrubber, operating with a through flow of 60 SCFM, must reduce

N204 concentration by at le.tst a factor of 3 (67% removal) or must reduce MbI:t

doncentration by a factor of 15 (93% removal)

Scrubbing is accomplished by a cross-flow absorber which moves the gas

across sLxteen cascaded filters, each with an associated fresh water spray
9

nozzle. The cross-section of the scrubber is about 2/3 ft", and of each filter,
¢)

about 1 ft". The filters are of pyrex glass wool supported by stainless steel.

The length of the scrubber is about 18 ft. _ folded once to a "U" form. Water

flow rate is 40 GPM. The scrubber and associated dilution blower were manu-

factured by the Buffalo Forge Co, of Buffalo, N.Y. Schematic diagrams are

shown in Figures D. 7 and D. 8. Details were also shown in Figure 3.9.1, and

test results pertaining to the operation of this scrubber were described in Sec-

tion 3,9, 1_,

Hamilton Standard's NASA--Goddard Hydrazine Scrubber

More recently, Hamilton Standard completed for NASA - Goddard a small

scrubber-neutralization system to allow the indoor firing of monopropellant

hydrazine reaction rockets. The system will accomodate a single 5 lb. thrust

engine and hvo 1/2 ib. thrust engines simultaneously, representing a hydrazine

flow rate of. 025 -. 030 lbs/min. The hydrazine concentrations in the system

inlet and outlet are not "known. Exhaust from the test engine(s) is drnwn into a
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manifold along with a significant quantity ot room air, which has the purpose of

diluting any free hydrogen which may present danger of explosion otherwise.

The depression to draw the exhaust into the manifold is provided by coupling the

manifold outlet to the inlet of a jet pump scrubber, which is a large water.driven

Je: pump. The scrubber exhaust impinges on the free surface of 100 gallons of

liquid in an oversize water box: the liquid is a weak (pH 2.2) solution of hydro-

chloric acid (HC1). Gas and liquid are separated in this box and the cleaned gas

is vented. The jet pump scrubber, drawing manifold gases, has an 8 in. (dia-

meter) throat, or venturi, and the water Jet which powers the scrubber uses

about 50 GPM at 70 PSI, requiring a 15 HP motor to drive the water pump. The

jet pump scrubber is supplied by Croll-Reynolds of Wesffteld, N.J., and is of

a type commov.ly supplied by this company, if not actually "off-the-shelf". A

diagram of the jet pump scrubber is shown in Figure D. 9.

The Peabody Oxidizer Scrubber

Peabody scrubbers have bet:r installedon the N204 vent lines at the Delta

launch facilitiesat both Cape Canaveral and Vandenberg Air Force Base. This

scrubber consists of a column, approximately 9 inches in diameter, mounted

on a larger base, approximately 3 ft. in diameter, containing a 5% solution of

NaHCO 3 which is recirculated during operation. Within the column are 5 im-

pingement baffleplates located at differentlevels, a spray header in the upper

part of the column, a spray nozzle in the lower part to saturate the incoming

gases and to cool the bottom plate stage, and a stainless steel wire mesh water

demister at the top of the column.

The liquor recirculating pump, gas control system, and the necessary

regulating and safety valving and piping are located externally. The whole

apparatus is mounted on a trailer for portability,

The recirculating pump capacity is 24 gpm; the GN 2 gas control regulates

pressure within the system to smooth out pressure surges and partial vacuums

and to control the operating pressure.

The base and piping hold about 190 gallons of scrubber solution, and a

float-type liquid level controller adjusts the water level on the plates. The

vent vapors enter near the top of the base of the scrubber where they encounter

, ................ _ ......... _. ....... _. =.., . --,,-._-, _r -J:. __"_: .'.,; " "_ :_7_.,.7.-_'_-,i__1--:--_"3.-.-.-_..--.i,.i, --.. _. . _ _ ._,1
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th_ N_.IICO 3 solution spray. The reaction begins here and continues as the ga_

proceeds through the 5 stages of bail'los, as follows:

NO x +NaHCO 3 _ CO 2 _ +H 2 _ +Na ++NO; +NO;+NO

in solution

with incidental NO formation:

3NO 2 +H20 _ 2 HNO 3 +NO

The NO reacts with t'.e HCO 3 ion or is vented from the column.

The final products in the scrubber liquor are solutions of NaNO 3, NaNO 2,

and unreacted NaHCO 3, with varying amounts of dissolved g_ses. Excess CO 2,

H2, H20-vapor, and NO x are released to the atmosphere.

The water for scrubbing is supplied by the spray head located above the

top plate stage. As the gases rise through the column they come into intimate

contact with liquid flowing downward through the five stages of impingement

baffles, utilizing a system of downcomers and seals. In the process, the

gases are entrained as myriads of small bubbles, with an immense surface area,

thus enhancing absorption into the water layers on the baffle plates.

As the water trickles down the column, it eventually reaches the enlarged

base (reservoir) and is recirculated by the pump. Replacement of the scrubber

liquor is performed as required.

The water demister captures entrained liquid droplets from the scrubber

gas, forming larger drops which can fall downward.

The cleaned gas (usually N 2) exits through a pressure-reducing valve,

located on the top of the column, to the atmosphere. A safety valve located

atop the scrubber base prevents a buildup of excessive pressure within the

system.

Except for the pump, this scrubber has no moving parts. The necessary

maintenance reported by its users consists primarily of unclogging plugged

spray heads and occasional replacement of the liquid solution.

The efficiency of this unit is not known. Only minor visible brown plumes

were reported on rare occasions by the personnel involved.

L
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The Nolte Hydraz!ne Scrubber

Nolte scrabbers have been installedon the Aerozine 50 vent lines at the

Delta launch facilitiesat both Cape Canaveral and Vandenberg Air Force Base.

The scrubber schematic is shown in Figure D. I0, and the following brief des-

cription is quoted from an operating manual.

"The Scrubber Water Supply Regulator feeds 30 psig, 3 G. P. M.

tap water to the Scrubber through a motor-operated, normally closed

ball valve. The Scrubber Water Supply Valve is opened at the beginning

of every testby turnint_on S-5 at the electrical control panel. Water

then flows through the Scrubbcr Flow Valve, ar_IScrubber Spray Valve.

These valves control the scrubbing efficiency of the unit.

"A standpipe in the bottom of the scrubber controls the liquid

level fcr optimum system back pressure, and a Scrubber Drain Valve

allows complete draining when required. Contaminated gas enters at

the vapor inletand rises through the water spray to the firstscrubbing

stage. As the gas flows through the 15 3/16"holes itcomes in contact

with the baffle and is deflected down against the water flooded plate.

The water is thus aerated and subsequently absorbs and neutralizes the

harmful propellant fumes in the vented gas. \Rer the gas has passed

through four successive scrubbing stages, 90,c,cof the noxious vapors are

removed; the water vapor is screened out with a stainless wire-mesh

water eliminator, and the remaining gas is vented to atmosphere. To

prevent high-pressure surge damage, each scrubbing stage has a 3/4

inch standpipe welded intoitwith a water cup on the bottom. When the

pressure builds upt the water blows out of the cup and allows gas to

flow straight to the vent without passing through the scrubbing holes.

Water refillsthe cup after the pressure surge is reduced."

The Rockwell Scrubber System

A system of scrubbers for N204 vapors was designed and built at the

Space Division of North American Aviation (now Rock, yellInternatlonal_in

the late 1960's. The follo._n_ paragraphs describe the _rstem.
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Baffle and Standpipe

Assembly" tVater Inlet

Fume Outlet

aless Wire

Mesh Water

Seperator

||

Figure D. I0 The Nolte hydrnzine vent scrubber.

ORIGINAL pAGI_ I_

OF pc_tt _Al._
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'q"ne RCS facilitycell exhaust system employs three exhaust sys-

tems that can operate independently or in several combinations. Two

of the systems, located adjacent to fuel and oxidizer test cells, have

identicalhardware. They employ 2000-cfm-rated exhaust fans, draw-

Ing approximately 1600 cfm from the test cell and 400 cfm from the 6

by 6-foot storage room at the corner of each propellant cell. The other

system is serviced by one 6000-cfm-rated exhaust system.

"The ductlng from the 6000-cfm scrubber is designed to draw

exhaust gases from either the command modtfie, service :nodule, or

both test cells, The fuel cell scrubber is interconnected to the fuel,

fuel storage, service module, and command module cell. The oxidizer

scrubber is connected to the oxidizer, oxidizer storage, and command

module cells. All positions can be independently serviced.

'rEach of the three exhaust systems consists of interconnecting

ducting, a cyclone exhaust scrubber and a contaminants dilutionunit

equipped with an axial fan. The interconnecting ducting for the cells

is equipped with remotely operated draft and isolationdampers, de-

signed to the same principle as the forced air supply, i.e., selective

isolation. In addition to the cell isolationcapability, the scrubbers are

equipped with dampers located in the ducting near the intakes to the

e.'_aust fans; these dampers can be used to isolatethe scrubbers from

the cells or for selectivelymetering the exhausting from the cells.

"Each of the cyclone exhaust scrubbers consists of an intake fan

and three water fog chambers (stacked). The fog chambers are sep-

arated by woven stainless steel screens and are equipped with separate

air-water fog spray systems. The mechanism of the exhaust scrubber

essentially in_,olvesforcing the contaminated air, exhausted from the

cell, through the f'_gchambers, where they chemically react, and

out to the contaminants dilution ur.it.In the contaminants dilutionunit,

the contaminated exhaust is diluted by mix.'ng with uncontaminated air.

Itis exhausted through an outletstack intothe atmosphere at a high

velocity, so that itis carried away from the vicinityof the facility

roof top.
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"The contaminants dilution unit consists of a high-speed (lO,O04_-

cfm-rated) axial fan Installed in a cylindrical stack. The stacks are

equipped with baffles; the baffles create eddy currents to provide

ultimate mL'_ing of uncontaminated air and air contaminated exhaust

from the scrubber outlet before projecting them into the atmosphere.

The contaminants dilution unit is installed adjacent to, and above, the

exhaust scrubber unit. It is connected at the outlet of the scrubber unit

and the inlet to the axial fans on a tee arrangement, so that the fresh

air intake is not appreciably restricted, yet the exhaust gas exiting

from the scrubber is entrained and accelerated.

"The water, used in the fogging system, is supplied by a pump and

is drawn from a water-level-controlled reservoir. After the water is

fogged into the chambers, it makes contact with the propellant vapors

and chemically reacts. (Note: the exhaust from the scrubber fan is

forced through the water fog in a swirling, cyclonic motion which, in

conjunction with the three fog chambers, provides a large contact area

for the reaction and scrubbing of the gases. ) The residual falls to the

bottom of the scrubber chamber and drains into the facility sump where

it is later neutralized and loaded into the city sewage. ,3

"The chemical reaction _f the propellants with water are second-

order homogeneous reactions; the completion of the reactions depends

solely on the length of contact time and assurance of excess water. How-

ever, since the first phase of the reaction is evolution of additional gas,

care must be taken insure that the fumes are not pushed through the

scrubber at a rate which does not allow sufficient reaction time.

"In the present scrubber design, the reaction time is assured by

a design using three fog chambers, A_ the metered exhaust fumes are

forced tangentially into the scrubber chamber, they come into contact

with water fog in the first chamber. At the top of this chamber, approx-

imately at the one-third level of the scrubber, is a core buster. After

the primary reaction, the resultant enters the second fog chamber and

3. Freeman, B. : '_he l_.action Control System Facility Operational Cap-
abilities Evaluation and Analysis." Report No. SID 66-1906, North American
Aviation, Inc., Space Division, Downey, California, May 1967, pp. 33-.34.
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K

?

further reacts. Fumes escaping the second chamber enter the chamber

for further sc_-ubbing action.

'_'he calculated efficiency of the first chamber is 50 percent pro-

vided that the correct metered level of intake is used. If necessary the

total scrubber can be operated at an 87.5 percent efficiency. The escap-

ing fumes are then diluted by mixing with uncontaminated air in the con-

taminated dilution unit and exhausted to the atmosphere..4

4. Op. cit., p. 46.
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E. 1 FORMULATION

Consider the transfer of heat away from a gas mixture for the purpose

of condensing one constituent, "C". Ifthe mixture is in equilibrium at each

instant in time, with allconstituents assumed to be perfect gases, then the

mole fraction of c,X C, is related to its parti._lpressure according to

Xc = ...£.c
Pm

where Pm is the mixture pressure, assumed constant. Hence the change in

)_C resulting from a change in its partial pressure is

dPC

dX C =Pm (I)

The mole fraction of constituent C is related to its mass and molecular

weight, m C and M C, and the mass and molecular weight of the non-condensible

fraction, m N nnd M N, according to

X C

m C
m

M C

m C m N

M C M N

..rodsolving for m C gives

Mc ( Xc
mc = M--'N" 1 - Xc

m N

(2)

(2')

Since the molecular weight and mass of the non-condensible constituents are

all constant, we have

I - X'C7- mN

Bid substitutingforXc, d '_C from equations (1) and (2),with PC = (PSAT) C

for the case of a s_tttrated mixture, gives

dm C = (3_
PmmN _ + MN] (dPsAT)C
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where PSAT (Tin) for constituent C is assumed known, T being the mLxturem
temperature• Equation (3) will be used as a difference equation to establish

numerical relationships between m C and T for various cases of interest. Itm
describes the incremental mass condensed (the decrease in the mass of con-

stituent C present as a g_. , --din C) that will result from an incremental de-

crease in mixture temperature and hence sat,_ration pressure, -(dPsAT) C.

The amount of energy that must be removed from this mLxture of gases

to accomplish an infL_ttesimal temperature change dT m is

E C ]° _mc dTj dT [hf_) dmcdQ =- mN PN SAT m C

where the specific heat of the non-condensible fraction, c and latent heat

the rate of change of the enthalpy of C due to moving along the saturated vapor

curve, and is also a function of T
m

(4)
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E.2 INITIAL CONDITION

Equation (2'), with m N = m - m C , becomes (after solving for mc):m

where m
m

Similarly,

Mc

1+ _-lX c

is the total mixture mass, and

PSAT

Xc = Pm

F
= - -1 -

m N m m m C = m m L

MC--X
MN C

i +( MC i)

]

1 - X C

[ MC I) mm

These values for m C and m N are used in Equation (3_ as initial values at the

beginning of the finite difference procedure.



335

E.3 SIMPLIFYING ASSUMPTIONS

The presen':ation thus far has been quite general. In our actual analyses,

a number of simplifying assumptions were made, as _ ,scribed in the following

paragraphs.

Data for the temperature dependence of the heat of vaporizatiov,

hfg, and the derivative of enthalpy with temperature etong the saturated vapor

line,_hg/_T, are not available, as far as we have been able to ascertain,

except for a limited amount of data in the case of MIV_. Theoretical approxi,- .................

mations could certainly be obtained for the temperature dependence of hfg

using Clapeyron's equation and empirical equations of state; because of the

relatively small temperature range of interest in this (nvesttgatfon, however,

it was decided to treat hfg and_hg/_T as constants.

The term _hg/_T) can be e._ressed as a function of more easily

obtainable quantities using the ex_p.ansion ...........

where all terms are functions of position along the saturation line, and

(dp/dT)sa t can be obtained from the appropriate vapor pressure equation.

For the sake of this investigation, the perfect gas assumption was

made so that

and the expression for (dp/dT)sA T was not needed. In the more general case,

( _ h/_ P_T could be calculated from a more sophisticated equation of state,

or from published data, using the relation

T p

where v is the specific volume of the saturated vapor.

It was further assumed (as in the ease of hfg) that the specific heat, c =P

( _h/ _T_p, is constant throughout the temperature range of interest. Similarly,
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the temperature dependence of the specific heat of the non-condensible gas,

cpN, is also neglected.

With these assumptions, equation (4) becomes

dQ = (cpN m N + Cpc m C) dTm + (hfg)C dmc'

with m N, cpN, Cpc, and (hfg) all being constants. The equation in this form
was used as a finite difference equation in the computer code for this _.nvesti-

gation.

Listings of the computer code are presented on the following two pages.

The application of this method of analysis to specific cases of interest is de-

scribed in Sections 2.13 and 3.11.
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DIVE,SlOb TITLE(IO)

OOUOL_ PRECISION ToGeZASSCeCLCGIO

R PORMAT (bFSe3)

_._ 2..FORMAT (3FSe3/4FI2.b/qA4) ......................

|1 FCRNAT IIHIo3CXogA4///o iNITiAL TEMPERATURE m°eF4eOoO CEG Ke//° IN

2[TIAL PARTIAL PRESSURE sOoFTo2o° VIA HG_//o INITIAL VAPOR _ASS FRAC

3TICN :eoF6aA//° INITIAL VAPOR MOLE FRACTION _e_6o4////kEXeOHEATee

412XeaNASS CQ_CENSEDeo?XoOPART|ALe/O TE_Poe||XoORENOVECetIOXeOPCT

SOF |NETIAL°oTXo°PRESSURGttlOX,OCA_CRIES PER GRAM°/e (OEG _)°e|OXe

6eICAL)eeLOXw°_|XtUR_ VAPCRoeTXoe(M_ _G)oeSXe°MARGINAL C_M_A

7TIV_I/)

12 FORMAT IFSe3,ElSo4eFl3e3oFge2oFl3e2e4Xt3_14e4|

i0_T86

READ (|Nel) _NeCPNePMiXoTIhlToTSTOPtCELT

C;hwCPN/ENNN

READ (iNo2) E_C,'_AToCSATCgAo_eC,Oe(TITLE(J) ;J;|_g) ............

HLAT=HLAI/EM_C

CSATC=CSAIC/E_MC

O=C.

TsT[N|T

PSATtlO.**(AtQ/(T÷C)+DtOLOG|OiT))

FRACzPSAT/P_[X ....

ZASSNs(|e-F_AC)/(|e_(.E_C/E_N-|e)_FRAC)

ZANsZASSN*CPN

ZASSC=Io-ZA$SN-

WRITE (lO_Y,II) ITITLE(J)oJzloQ)oToPSAToZASSCoFRAC
o

ZAWsZASSC

..... KOUNT=O ........................................

50;T=T-OELT

PSATI:IOo**(A_O/iT_C)_O*OL_GIO(T))

.... OE_M:_MCtE_/P_(X/ZASSN*(ZASSC/E_NC+ZASSh/E_MN)_2*(PSAT-PSAT|)

OELQ:(ZA_÷ZASSCtCSATC)tCE_T+,_AT*CELN

Q=Q_OELQ

.... ZASSC:ZASSC-OELN ......................

PSAT=PSATt

.... KO_NT:KO_NT+|
IF (KOUNT6LTe|O)" GO TO 50 ...................

HEAT:DELQ/OEL_

ZAF:Z;_-ZASS_

TNEETsQ/ZAP ..................................................

I00

ZAR:ZAP¢|_Oo

ZA_G:ZA_/ZA_

• R|T(lICiT,12)

KC_NT_O

IF (ToGT.TSTCP)

CChTIN_

STOP

ENC
._ .

ToQoZAReZA_G.PSATt_EATtTVEET

GO TO 50

Listing E. 1. Computation of N2_4, _ilVi_,L_DMH condensation.
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qlvct"_;lON TITI CliO+

._IfRtr PI)FCIS;[r'"+' r.q. ZASSr._t_.lO

I l.,.O_f_,&T (6FmJ. _ I

? rrl_.Ua, T (_:_3,+/4F.t+,6/q^41
11 F_'4A 'r (IHI,3OX*_A_III _ INITIAL TrVOFUe'TU_¢. =ltF4.0te _¢C KS/1 + I*_*

_TIPN =o.=6._II' [+iltt4t V4P nl_ unt.+ PI_ACTIrIIU "'_F_./.IIIIIgytoHE++T ',
4I?Xt-',4A<;S C,,IN_I:_,SFr_'_ 7Y.'PARTIe.I "/" TFWP',,IIXt,,++EursvI:r)-,LgK,,,I_CT

cOc I_,ITIAL,.?.<,,p_.cSSU¢c,,LOX.,(',+,LI_OlF++ ocm GI_,,,_,I, (ql:_ K)',|,)X.
6"lrAl )"IIOXs't'IIXTt;'_@ V_Df'sI+"I?X."( _k4 HS|ttIPJX.'I'vIAR_[N_+L CIImUL_,
TTfVP'I)

12 FORMAT (l=8.'4,fl_._,,f:t3.3,Fq.2,FX3.2,.',x,3rl_,,_)
l_'=q
InUT=6
RC._f _ { [_',l) E_*_CP+*'!,P_*IY,TINIT,TSTt_P,r_ELT

C PN=C P_:/E: U'4N
_Fe_ ( [Nt?I FeUCeHI ,'tTeCSA'fCeA,_.,C,i_t(T[TLF.(.I) tJmttOl
H_. AT=HL A T/.¢u',* C
0=_3.

T:TINIT
OtlhY=_0.*$ (-| t. 585 +.0"_6= T)

&LPHA=St)OTI_UAY/I t2._'0tJIY| I
EMuC=At PH_*_6._O_+ ( |.-_[. PH._ )*,:=2.0 [5
aS_T=t 0,** (h IT +_ +C*'r+r_mT,I,T )

PS6T= tO. *P$-'_T

Z^SSN= ( I .-F_ ACII { l.+( c_'C/r u_'_-I • I*F_ AC I
Z _.N= ?ASSN_CPN

ZAqSC= L.-ZA_SN

W_'ITE (IOUT,ll) II'ITLEIJ),J=t,O),T,I}SAT,Z_S._C,I:_AC
Z 6'_'=1AS_C

_0 Tm T-{_[L T
Otl6Y=I O.e* (- t l .585 _.036.T |
ALPH/_--.S_RT (QUAY/( I 2.+O(IAY) )

_MMr.-',AL PHA=_,b,O0_ ( I .-At oI.4_)*o?. 0 |

P S_T ! = lO ,*,= ( A/T*_.C*T+0_T= T)
_$_tl= LO.*PS ._r t
13EL M=F_.Mr* .=_lq_!/_I X/Z P_SS'_I* ( Z&S$C IE_C*"I.*_S_NIF_IMN) **2*( oSAT"PSAT 1 }
,n.=L ,_= ( 7/_N*Z-_S.SC =CS._TC )*OC_L T _.Ht &T.I')_.L kl

l._O

O=O+r)FLQ

Z aSh, C; ?._SSC-pSi
DSAT=PSAT l

K flUNt =KnUNT _. 1

[P (KnUk_T .L+T. [0 I
HE_T=OGL0/r}CLm
Z ^Pro Z _M- Z ,*.SSC
TWEEI=Q/Z ^o
Z&R=ZAP$IOOo
Z 4Nf;,=t AR /Z._U

W_ITF ( I_UT, 12)

IF (T ,r,T,,T_TP_ )

CL'NT INU_:
STriP

_.r_ Tn 50

T + _t TAP t _'_%IG+ i_S& T, w_ &T + TWINE T ,ALPWA

GO rr_ '_0

Listing E.2. Computation of N204 condevsntion.
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In the case of helium streams contaminated with hypergolic propellant

vapur.% one possible means of separating the helium from the contaminant is

to simply utilize the low permeability of many materials to helium. Helium,

a very simple monatomic gas with a low molecular weight of 4, will diffuse

rather readily through many solids, whereas MMH (molecular walght 46) ana

N204 (molecular weight between 46 and 92 depending on degree of dissociation)

are easily contained and will not readily diffuse through most solids. In a

chamber, under internal pressure, containing a mLxture of helium and either

MMH or N204 , the concentration of helium will decrease with time as the

helium leaks out through the walls of the chamber. The helium which does

leak out will be essentially 100% pure if the chamber walls are properly de-

signed.

Polytetraflouroethylene (PTFE, or Teflon) was chosen as the basis for

a crude calculation because of its compatibility with both fuels and oxidizers.

Its permeability to N204 and M;VIH remain to be determined - we shall assume

it to be impermeable, for our purposes, to both. At room temperature, 100

square inches of Teflon FEP film .001 inch thick and supporting a one atmos-

phere pressure difference will pass 1 gram of hehum per day according to

information provided to us by DuPont, the manufacturer. Hence approximately

2.4 x 106 square inches - 16,700 square feet - of Teflon at this thickness would

be required to pass one kilogram of helium per hour. The total volume of

Teflon would be 1.4 cubic feet, and because the flow per unit area is so small

the sheet could be high!y convoluted, in the manner of an air filter element, so

that the actual volume of the chamber could be on the order of several cubic feet

rather thdn the volume of (16,700/6) 3/2 cubic feet that would be indicated for a

simple cube with the necessary surface area.

Such an extensive membrane would haw to be carefully sup uorted to enable

it to contain the necessary pressure difference. As contaminant concentration in

the gas box exceeds saturation and contaminant precipitates out as n liquid, it

can be bled out of the gas box.

,Atthis stage, itwould seem that the possibilityof an accidental opening or

hole in the membrane (an intolerable situatlon_is the greatest potentialdifficulty

to overcome, Many operational and mechanical problems..zRmain unmentioned

and unexplored and the idea is put forth only as a possible alternntiw that might

win'rant additional study.
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G, 1 EXISTING STANDARDS AND REGULATIONS

The most comtnonly quoted standards for airborne concentrations of vari-

ous substances are the Threshold Limit Values (TLV) established by the Am-

erlcan Conference of Governmental and Industrial Hygienists (ACGIH), and the

Emergency Exposure Limits (EEL), Short-Term Public Limits (STPL) and

Public Emergency Limits (PEL) recommended by the Committee on Toxicology

of the National Academy of Sciences - National Research Council (NAS-NIRC).

Threshold Limit Values are airborne concentrations to which nearly all

workers may be repeatedly exposed day after day without adverse effect,based

on tlme-weighted concentrations for a 7- to 8-hottrworkday and 40-hour work-

week. They permit excursions above the limit, provided they are compensated

by equivalent excursions below the limit during the workday. Table G. I pre-

sents the TL.'V'sfor hypergolic propellants and other chemicals typicallyfound

above liquidhypergolic propellants, or typicallyresulting from common hyper-

gollc p:opellant disposal processes.

Short-Term Public Limits are defined as "limits for short-term exposure

of the public to air pollutants in view of occasional repeated events in the same

locality." The Public Emergency Limits apply to "accidental, unpredictable,

and uncontrollable exposures of the public to toxic substances. These exposures

are expected to be single events in the lifetime of the very few people who would

accidentally be exposed. The PEL assumes that some temporary discomfort

may accrue to the public but that any effectresulting from the exposure is re-

versible and without residual damage, " The limits p_'oposed by NAS-NRC in

June 1974 for hydrazine propellants are presented in Table G.2.

Emergency Exposure Limits for military and space personnel have also

been recommended by NAS-NIRC, in 1971, and are presented in Table G._.

An Emergency Exposure Limit for nitrogen dioxide is included along with

the NAS-NIRC hydrazlne recommendations in the "Hazards of Chemical Rockets

and Propellants Handbook", as follows:

10 minutes 30 ppm

30 minutes 20 ppm

60 minutes 10 ppm

• " ,,i, "'i'_ _ .......... ...... I_ -- "
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TABLE Go 1

THRESHOLD LIMIT VALUES FOR CHEMICAL SUBSTANCES

IN WORKROOM AIR,ADOPTED BY ACGIH FOR 1975

Substance Concentration Concentration 3
by Volume (ppm) by Mass (mg/m)

i ,_ i i

Hydrazine 0.1 0. I

Monomethyl hydrazlne 0.2 0.35

I, I- Dimethylhydrazine (UD_[H) O. 5 1

Nitrog,._n dioxide 5 9

Nitric acid 2 5

Hydrogen peroxide 1 I.4

Ammonia 25 18

Carbon monoxide 50 55

Chloroform 25 120

Methyl chloride I00 2i0

Methyl chloroform 350 1900

Methylene chloride 200 720

Nitric oxide 25 30
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TABLE G. 3

EMERGENCY EXPOSURE LIMITS FOP_ MILITARY
AND SPACE PERSONNEL"

Compound

Hydrazine

Time Limit

(mini (ppm_

10 30

30 20

60 10

Mono me thylhydrazine 10 90

30 30

60 15

I, 1-Dimethylhydrazine 10 100

3O 50

60 30

2. "Basis for Establishing Guides for Short-Term Exposures of the Public to
Air Pollutants." Pre,_),_Lred by the Committee on Toxicolcg.v of the National Acad-

emy of Sciences - National Resem'ch Council (197D. NTIS PB-199 904.
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The TRW study3, which was performed for the Environmental Protection

Agency (EPA) and will undoubtedly have a stron_ influence on future EPA stand-

ards, presents a "recommended provisional limit in air" of 0.01 ppm for N2H 4.

The basis for this recommendation is given as %01 times TLV", and presum-

.'_blythis criterion would also be applied to MMH and UDMH. The same set of

reports also recommends provisional m_ximum exposure limRs for ammonia

(0.02 mg/m 3) and carbon monoxide (0.55 mg/m 3) in air, both values again

based on 1,%of the TLV. *

A number of local standards also exist in the case of nltrog_n dioxide (the

monomer of nitrogen tetroxide),which is a very common pollutant. The stand-

ards for the State of Florida are as follows:

Alert Status

Warning Status

Emergency Status

Alert Status

Warning Status

Emergency Status

0.6 ppm

1.2 ppm

1.0 ppm

O. I5 ppm

O. 30 ppm

O. 40 ppm

over period of one hour

over period of one hour

over period of one hour

averaged over 24 hours

'averaged over 24 hours

averaged over 24 hours

Figure G. 1 presents this multitude of NO 2 standards in visual form.

In addition to considerations of human exposure, there are other environ-

mental effects associated with nitrogen dlo:,:ide.Continued exposure of pl_.nt

lifeto NO 2 will change the flora of the environment. The sensitivityof selected

pl:mts to NO., has been categorized as follows:4
w

Sensitive: .'w.Rlea,pinto be.m, brittlewood, hibiscus, head l=ttuce, mus-

tard, sunflower, tobacco.

Intermediate: Cheesewood, chickweed, danaelion, annual blue R_'ass,

orange, rye.

Resistant: asparagus, bush bean, carissa, Kentuck._,blue grass, heath,

L'<orr_lamb's-quarters, nettle-loafgoosefoot, pigw,._ed.

3. Ottinger, R.S. ;Blumenthal0 J. L. ;Dal Porto, D. F. ;Gruber, G.I. ;Sanh.,

M.J. ; and Shih, C.C. : "Recommended .Methods of Reduction, Neutralization, Re-

covery or Disposal of Hazardous Waste". Report No. EPA-670/2-73-053-1

(August 1973_. NTIS PB-244 591.

* In the case of ammonia, there appe:u-s to be a discrepancy be_veen the
stated basis for recommendation and the actual recommendc ,_provisional limit.

4. Reco_nition o_ Air Pollution InJul_"to Vegetation: A Pictorial Atlast J.S.
,lacobson and A.C. Hill, Eds., Air Pollution Control Association and National

Ai:' l_ollutionControl Association, Pittsb'trgh,Pa. (1970).

.................... , ........ __. _--_-a_-,_:-_---' .:" _' _'-:.-- ".],-.-_ ";•.........",'-_" "--_="_,' _,.............. , m
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G.2 CARCINOGENIC PROPERTIES AND CONSIDERATIONS

The pathological effects of environmental carcinogens resemble those of

other toxins in that the effect is proportional to dose. There is, however, ,-m

import,'mt fund_anent,'tl difference. Ceils surviving ordinm'y toxic agents usually

show complete recovery or may even develop some sort of resistance to these

species. However, ceils exposed to the carcinogens retain the pathological car-

cinogenic burden representing the sum of such repeated carcinogenic imprints.

There is, moreover, no relation between acute toxicitT of a chemical and

its earcinogenicity. Chronic toxic action, often expressed in tissues bv signs

of chronic infl,-mm_ation, ha_q no direct relation or significance to the develop-

ment of carcinogenic reactions in such tissue, although it may precede or ac-

company them. Such toxic reactions :tre not a part of the carcinogenic process.

Numerous competent scientists have testified that presently available

evidence does not justify the adoption of a "s_e dose", because sueh a s,-de dose

does not exist scientifically, ,'rod moreover, e,'mnot be demonstrated by any of the

test methods available.

The Environmental Protection Agency h,'m defined nine guidelines to be uaed

with regard to suspected c,'u'cinogens. One in particular should be quoted here:

"The concept of a threshold ex'posure level for a carcinogenic agent has no

practie,'fl significance because there is no valid method of establishing such a

level. 'e5

Fta-ther definition of EPA's approach to the carcinogen problem has been

presented more recently. "According to EPA, a substance will be considered to

be a presumptive cancer risk when it causes a statistically significant excess

incidence of benign or malignant tumors in hum,'ms or anim-fls. And the agency

_ays tha: it holds by the concept that any exposure to a carcinogen, however

sm,'dl, will confer some risk of e,'mcer on the exposed population..,6

.

6,

Chemical and Epgineerin_ News_ Nevember 3, 197S, page 16.

Chemical ,md En_ineerin_ News, May 24, I976, p:,_e 4.

. ........... • :......... - .; - :. -_:.____* _ ..... _-.. _ ........ _ __ .......
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The NAS-NRC report quoted above treats questions related to the toxicity

,'rod carcinogenicity of the hydrazines at considerable length with very extensive

references. A relatively very small number of the references are concerned

with carcinogenicity studies, all with laboratory animMs. Some of the data in

the area of ,,'arcinogenieity, as presented, are contradictory, and the report

leaves one with the impression that carcinogenicity of h,_trazine in particular is

still :m open question. It is our opinion that the evidence for hydrazine carcin-

ogenicity is much stronger and that all the hydrazine fuels should be treated and

handled _ carcinogens, for the following reasons:

1. There is no reasonable doubt as to the mutagenic properties of

hydrazine and there are e:ctremely few chemical ,_gents v'l:'ch ,'u'e

mutagenie and not carcinogenic. In fact mutagenicity of bacteria

is now being used extensively in the chemical industry as a preliminary

index of potential carctnogenicity.

•2. Hydrazine sulfate is now used as an anti-tumor agent and there

is no known anti-tumor agent which is not also a c,-u'einogen with

the possible exception of some steroids. It is ,-also .t:nown that hydra-

zine reacts with oxygen in the presence of metals to produce hydro._.'l

radices ,'rod hydrogen peroxide. These ,-1gents are known to be car-

cinogens.

3. A study of the available data in DHEW Publication No. (NIH)

75. 'Survey of Compounds Which Have Been Tested for Carcino-

genic Acti_,Ity 1972-1973," revealed tho_t Toth conducted studies

oah.vdrazine itself as well as hydr:'tzine sulfate. We quote from

this document: "Author concludes hydrnzine significantly increases

the incidence of lung tumors in Swiss mice. " Although Toth's

negative finding in the case of hydraziue sui_ate was quoted in

the NAS-N1RC report, th_ lx)sitive finding it, the case of hydrnzine

itself was omitted, presumably because these results were not

included in the journ:d ,'u'ticle being referenced.

On the b_is of these data, the conclusion that hydrazine is a carcinogen

seems inescapable, The carcino_enicity of the methylated hydrazines is even

more firmly established by bcLh the av'_ilable d_a and comparative considerations.
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Results of Toth and Shimtzu 7 and Toth 8 are quoted in the NAS-NRC report with

regard to the carcinogenicity of monomethyl hydrazine, Not quoted in the N.AS-

NRC report, but included in DHEW Publication No. (NIH) 75, are other data by

Toth taken in 1973 in which the incidence of tumors is .alsoincreased by ingestion

of UDMH.

One consideration of particular importance in the case of the hydraztnes in

solubility. It has been shown that the very soluble and the least soluble of poten-

tim carcinogenic agents yield the lowest number of cancerous responses. Hydra-

zincs, being very soluble, are probably less potent carcinogens than many others

that are known. Hydrazlnes being vented in an effluent stream to the atmosphere

may, however, undergo reactions which would cause the reaction product to be

less soluble and therefore more carcinogenic.

For several years a correlation has been noted be_veen high levels of NO 2

and the high incidence of urban cancer, yet NO2,HNO 3, HNO 2, and NO are not in

themselves carcinogenic. However, HNO 2 can combine in the atmosphere with

certain amines to form nitrosarnines which are highly carcinogenic. Amines,

which a.refound .almost everywhere,are produced in the decomposition of proteins

.'rodare used ex'tensivelyin industrial processes.

Recent studies have shown nitrosamines includingdimethylnitrosamine

,'DMN) to be present in Baltimore (0.02 to 0.01 _.g/m3), Charleston (0.7,ug/m3),

and New York City (0.SJag/m3). 9 Water and sewage samples at some of these

locations .alsoshowed the presence of nitrosamines. Preliminary calculations

have shown that a person ingests 0.5 ,ug of DMN ifhe eats four slices of cooked

bacon and inhales 0. S while smoking a pack of cigarettes. However, a person

breathing. Mr containing IJag/m 3 of DMN for 24 hou:'swill inhale I0 to 14 jag of

DMN. Animal studies have ,alsoshown that nitrosamines activate other relatively

weak c:trcinogens such ,'usbenzo (a)pyrene.

7. Toth. B. ; ,and Shimizu, tt. : "Methylhydrazine Tumorigenesis in Syrian
Golden Hamsters ,and the Morphology of Malignant Histiocytomas." Cancer

Research, Vol. 33 {1973J, pages 2744-2753.

S. Toth, B: "Tumor Induction Studies with Substituted Hydrazines." Report

No. AMRL-TR-73-125, Wright-Patterson Air Force Base, Ohio _1973).

9. Shapley, Debor,'th: ',_itrosamines: Scientists on the Trail of Prime Sus-

pect in Urban Cancer". Science, Volume 191, pages 268-270, January 1976.

• : _ -,_ - - -. - • - .-_.:. _,:-, ,--" ._' d-". "" -:,,.,rL_Jd-_' 7" "" " "" .r _'=_- "" ,,_l_: ,_": .... I - _
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A 1970 study which correlated cancer in 38 U.S. citieswith a great num-

ber of environmental chemicals found that NO 2 cross-correlated with seven out

of eight categories of cancer and with he_t dlsenseo Thus nitrosamines are

now being considered ,'isthe "defining factor in urban c_ncers".

A great deal of research remains to be done in this area, but at the present

time the data strongly indicates that atmospheric nitrosamines present in minute

concentrations pose a hazard to allcontinuously ex'posed personnel.

Another pertinent report appeared in the September 29, 1975 issue of

Chemical and En_ineerin_ News, as follows:

'_itrosamines have been found in the air in t_voeastern U. S.

cities and consumerist/envlronmentnllst Ralph N,_ier wants the En-

vironmental Protection Agency to start an all-out study.

"In calling for EPA action, Nnder sites a recent study by S unuel

Epstein of Case Western Reserve University, Cleveland, and David

Fine of Thermo Electron Corp., Waltham, Mass., thatfound as much

as 0.96 ppb of dimethyl nitrosamine in the ambient air in Baltimore.

Dimethyl nitrosamine is re.e;ardedas a powerful carcinogen, and this,

the report says, 'gives rise to considerable cause for concern. '

"In addition, levels of 0.014 to 0.051 ppb of the chemical were

found in Belle, West Virp;,inia,an industrial suburb of Charleston.

However, in three other eastern cities - Philadelphia, Wilmington,

_ld Waltham, Mass. - the researchers did not find detectable levels.

"Commenting on the findings_ Fine and Epstein caution that be-

cause their measurements were 'one shot' determinations, 'there is

no knowledge as to whether the levels reported here represent average,

high or low values. ' But they say the data gleaned in the study 'con-

firm :m earlier report (from West Germany_ that nitrosamines may be

present in urban air.'

"Epstein says that he isn't sure where the nitromanines in ambient

air come from, but he has several theories. One is that they originate

directly from certain industrial processes that use them. Another is

that they result from the reaction of atmospheric nitrogen o:'ides produced

by" industrial sources and automobiles with airborne :tmines from natural

or industrial sources.
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"For its part, EPA says that it is studying the data produced by

Epstein and Fine, ,_.nd that it pl_s to conduct studies to determine the

extent of nitrosamines in urb.'m air.

".Moreover, aeeording to EPA, it is possible that nitros.'tmines ,'flso

may be present in drinking water supplies, and the agency plans to expand

current water supply studies to include these chemicals. Epstein and

Fine also consider this in their study but s_y that the possible presence

of nitros.'unines in drinking water is 'tentative :rod speculative.' ,,10

10. Chemical ,_nd Engineering News t September 29, 1975.
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ANALYTICAL METHODS FOR PREDICTING ATMOSPHERIC

CONCENTRATIONS AS A FUNCTION OF EMISSION FLOW RATES

AND CONC ENTR ATIONS

To apply any of the stsnd.'u.ds discussed in Section G. 1, it is necessary to

have a livk between emission flow rates and concentrations, and atmospheric

concentrations at any point downwind of the point of emission. In evaluating

scrubber requirements, for example, a relation is needed between the postulated

scrubber discharge parameters ,'rod atmospheric concentrations at various finite

distances from the scrubber. It is obviously not necessary to apply ai._ospheric

stand:u'dsexactly at the scrubber exit, especially in the case of very small flow

rates for which concentrations will fallrapidly within a short distnnce of the

scrubber exit.

The best approach, in view of modern computational capabilities and the

fact that the basic problem of atmospheric dispersion of identifiablespecies is

a common one, is to use a computational model to predict downwind concentra-

t{ons as a function of emissions for a wide variety of atmospheric conditions -

wind velocity,profile, lapse rate, humidity, etc.

The remainder of this section describes briefly the NASA effluentdisper-

sion modeling capability and one of the simplified methods of analysis that is

in common use.

...._ __::_ _..,_._--...... , .... ;--.,'r_,'.; =" "-_" " "" _ ": '...... _'_'_"_'_" " "_'_7.......7-'" (......... i.......... I
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NASA Dispersive Travsport Prediction Capabiliti,_s

A significant NASA effort has been underway for several y_ars, primarily

at .Marshall Space Flight Center and Langley Research Center, to develop com-

putational models capable of predicting rocket exhaust effluent transport for air

quality and environmental assessments. A major objective of this effort has

been to minimize the environmental constraints on Space Shuttle launch oper-

ations. The end result of these efforts is a special purpose computer incorpor-

ating a set of mathematical models known collectively as REED (Rocket Exhaust

Effluent Diffusion). This system recently became operational, aud was flown to

Kennedy Space Center for the t_vo Titan IT[ Viking launches that took place during

Summer 1975. The system was used at KSC for operational predictions of the

dispersion of the Titan exhaust plume. Its use is of course not limited to exhaust

plmne problems; almost any point-source or line-source effluent dispersion

problems could be treated with some attention to the specification of the input

parameters.

The REED system has been described quite thoroughly in a paper by
11

Stephens and Stewart. Important earlier descriptions of the diffusion _dels
used in this program were given by Stephens et a112 and Dumbauld et al. A

more recent report by Gregory. and Storey 14 describes the measurement of rocket

exhaust effluents at KSC and comparison with the NASA multilayer dispersion

model. Excerpts from the Stephens and Stewart paper will serve to describe the

REED capability in more detail:

11. Stephens, J. Briscoe, and Stewart, Roger B. : '2Rocket Exhaust Effluent
Modeling for Tropospheric Air Quality and Enviromnental Assessments. " Paper
presented at NASA Space Shuttle Tropospheric Environmental Effects Meeting,
Langley Research Center, Hampton, Va. 23665, February 24-26, 1975.

12. Stephens, J. Briscoe_ Susko, Michael; Kaufman, John W. ; and Hill, C.

Kelly: "An Analytical An_:_ sis of the Dispersion Predictions for Effluents from
the Saturn V and. Scou_-Algol III Rocket Exhausts. " NASA TMX - 2935, October
1973,

13. Dumbauld, R.K. _ BJorklund, J.R. ; ana Bowers, J. F. : "NASA/MSFC
Multilayer Diffusion Models and Computer Pr_._g'ram for Operational Prediction
of Toxic Fuel Hazards." NASA CR - 129006, 1973.

14. Gregory', Gerald L., and Storey, Richard W., Jr. : "Effluent S_mpling of

Titan HI C Vehicle Exhaust." NASA T._LX - 322S, August 1975.
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"The spatial description, in terms of concentration and dosage, of the dis-

persive transport of effltxents from a discrete source is _forded by the NASA/

MSFC REED description. " (See Figure G.2). "This description, which repre-

sents an update in our t_._chnology and techniques, is composed of three models:

the meteorological model, the rocket exhaust cloud rise model and the multi-

layer diffusion model.

"The NASA/MSFC meteorological model for the atmospheric conditions

involves a number of techniques to model the thermodynamic and kinematic par-

ameters measured in the atmosphere by rawinsonde and tetroon soundings that

are used as the input for the cloud rise model. Since launch predictions involve

a meteorological forecast, we normally limit our model to a first-order meteoro-

logical technique in which the surface mixing layer is treated as a homogeneous

layer. This same first-order meteorological technique is also used in climato-

logical assessments. In postlaunch analysis, a second-order meteorological

technique is utilized,where the surface mixing layer is structured into a number

of more nearly homogeneous layers. Here the term homogeneous layer means

that the layer parameters can be modeled in terms of representative mean values.

Options exist with both of these techniques to include precipitation effects and

land-sea interfaces.

"The NASA/MSFC exhaust cloud rise model is designed to tltilize the out-

put of the meteorological model and define the source parameters for the multi-

laver diffusion model. This is the first-order ,.o'radient technique that uses t_vo

value differences to obtain thermodynamic parameters. The second-order sta-

tistical technique uses regression analysis to obtain the thermodynamic parameters.

There is an option of !nstantaneous.sources for solid rockets like the Titan HI.

In the case of vehicles like the Delta-Thor or the Space Shuttle a combination of

options must be used that utilizes both the instantaneous and continuous source

options to account for the combination of solid motors and liquid engines. Two

options ".dso exist to account for the thermodynamic lapse rate; namely, the

adi,,tbatic _ and the stable option_. These options are always combined with

the source vptions.

'The NASA/MSFC multilaver diffusion model is "1 'tr. .,esl,.,ned to take the output

of the exhaust cloud rise model .'rod generate a mapping for the concentration

levels of the exhaust constituents. This is accomplished by using one of two
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techniques, the unlayered first-order technique or the layered second-order

technique. The two first-order techniques are the plume teclmique (model 1}

where a cylindrical distribution is assumed and the _round cloud technique

_model 3) in which an ellipsoidal distribution in a homogeneous sttrface mixing

layer is :tssumed. The second-order techniques -_re the static phtme technique

(model 2) where it is assumed that there is a laver where no turbulent mLxing

occurs anti the distribution technique (model 4) where the surface mixing layer

is layered into statistie:flly thermodyttmnic:flly and kinematicMly homogeneous

layers :tlong with a well distributed source. The multilayer diffusion model has

three options that can be used with either technique. There is :t L_recipitation

sc:tvea_in_ option (model 5}, or r. -.optiont to account for the depletion of an

exh:mst constituent during rain. There is a deposition option (model 6_, or I" -

option, to account for gravitational settlil_. A new option, the h -option, has

been added to account for surface al_sor_tion of a constituent. In addition, the

diffusio,_ model has pro_'isions for cohi spills "rod fuel leak ealcuhltions in the

surf:tee mixing l_lyer. "
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Dispersion Calculations t'sing the Bos:lllquet .lilt Pearson Equations

The preceding method, while very tx_werful, is not very accessible to

people who don't work with it reh,'ularly. V_ile similar methods will no doubt he

avail:fl_le as progr:uns for general purpose computers in the near future, we

know of none that is currently availablv. Until such programs are available

tradition:fl "smokestack eqtmtions" will continue to see widespread use.

The mathematic:d expression of atmospheric concentration of a contaminant

,iownstre:un from a source of eonst:mt emission is complicated because of tt_e

variation with time. The most frequently used formulas in stack meteorology

are those _ix'ing average ground level concentrations downwind from :in elevated

source of const:mt discharge rate, such ,'us the Bosanquct "lilt| Pe:lrson 15 equa-

tions. Local topographic ,'tad microclimatie conditions, :lad other turbtdenee

f:letors_ :ire not considered in this first :lpproximation.

The dilution of air contaminants is a direct result of atmospheric turbulence

:rod molecul:w diffusion. The rate of turbulent diffusion is so much ._reater than

the rate of molecular diffusion time the latter effect is :also net-letted.

The workin_ formul:l used for c:flctLLatin_ the m:uximum aver,_e ,_round

level concentration° Cma.x, of cont:m_in:mt issuing from the vent stack is

c = tq -P--
Ill.ix s_ ._ ,', tl

e'u It-

where c" = ,_l'OtlIl, t level concentration tbv volume)
Ill :L_ '

Q -- emission rate at atmospheric temperature teuhic feet
per secondl

u mean wiixl sl×•ed (feet l_,,r secondl

tt = effective s_:,ck height (feetl

p,q : Bos:mquet diffusion coefficients

e -: 2.71S

For the purlx_se of :m example, E was t_en to be 0.5, :rod the effective
q

stack height, Ii, to he lnO feet. The highest Nt_., discharge rate during loading
- i6

of the S|'1;let' Shuttle oxidizer t:ml, s has heen estilllated to he about O. 04 cubic

15. ltos:mquct. C. ll., :lad Pearson. ,l. I.. : "The ,_twe:ul ¢_f Sn:oke :rod Gases
..... , l_.l._-12tl.l 1196:11.fronl t Ilinlnc.vl. Trlins. F:lradav _oe. Vol, 32 trlgt,s ., c

Itl, St;lk, II,, el :l]: "llyperl=olic th'ot_ell:mi._ - l.iquht :irlt Viip_r l)ispns.q. "
,l_.lil 11 loi'idii ln._iiiute of l'eckrioh_', .%h,lhotn'ne, I.'I.' ''_llci_ol'i N_, Mig-li;-I, :

l.'t,l_ru'll')" I.t, t,I.
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feet per second. Using these v,'tlues, the relation for C becomes
111ax

C = 4.319 x 10-7/u
nl$'_

orCmax(ppm) = 0.4319/u

This relation obviously gives very low ma.,[imum ground level concentr:l-

tions, even for the scrubbed effluent. The results would of course be

much less favorable in the case of the ground level discharge, because of the

fact that C is inversely proportional to the square of H.

Under a strong inversion, it would be expected that the NO concentration
x

would inc_-case several-_oId at the lower witxt spe_ds (below 5 fps) l)ut remain

approximately the s.-une at higher" wind speeds _above 7 fps).

The 'ocation of the mxximmn ground level concentration is given by

X _ tt
mxx 2p

where t.vpical valves of the Bos:mquet diffusion coefficient p range from 0.02

(low turbulencei t¢ 0.10 (moderate turbulence1. For our assumed 100 foot ef-

fective stack height th!s gives a range of v.flues of X from 500 to 2500 feet.
n] :L"_

For ground levcl discharge, not only is the mxximum grotlnd level concentration

much higher, it _so occurs closer to the scrubber -- 50 to 250 feet for . '0 foot

effective height, for ex:mlple. The lapse rate ltemperature profile b of the lowest

laver of the atmosphere wouht of course :flso ilffluence these restflts.


